MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtsum Structured version   Visualization version   GIF version

Theorem chpchtsum 25364
Description: The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpchtsum (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))))
Distinct variable group:   𝐴,𝑘

Proof of Theorem chpchtsum
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13074 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
2 inss2 4060 . . . . . . . . . 10 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
3 simpr 479 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
42, 3sseldi 3825 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
5 prmnn 15767 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
64, 5syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
76nnrpd 12161 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
87relogcld 24775 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
98recnd 10392 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
10 fsumconst 14903 . . . . 5 (((1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
111, 9, 10syl2anc 579 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
12 simpl 476 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
13 1red 10364 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ∈ ℝ)
146nnred 11374 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
15 prmuz2 15787 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
164, 15syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
17 eluz2b2 12051 . . . . . . . . . . . . 13 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1817simprbi 492 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
1916, 18syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
20 inss1 4059 . . . . . . . . . . . . . 14 ((0[,]𝐴) ∩ ℙ) ⊆ (0[,]𝐴)
2120, 3sseldi 3825 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴))
22 0re 10365 . . . . . . . . . . . . . 14 0 ∈ ℝ
23 elicc2 12533 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
2422, 12, 23sylancr 581 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
2521, 24mpbid 224 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
2625simp3d 1178 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
2713, 14, 12, 19, 26ltletrd 10523 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝐴)
2812, 27rplogcld 24781 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ+)
2914, 19rplogcld 24781 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
3028, 29rpdivcld 12180 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ+)
3130rpred 12163 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
3230rpge0d 12167 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((log‘𝐴) / (log‘𝑝)))
33 flge0nn0 12923 . . . . . . 7 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
3431, 32, 33syl2anc 579 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
35 hashfz1 13433 . . . . . 6 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0 → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
3634, 35syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
3736oveq1d 6925 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)) = ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)))
3831flcld 12901 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
3938zcnd 11818 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℂ)
4039, 9mulcomd 10385 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
4111, 37, 403eqtrrd 2866 . . 3 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
4241sumeq2dv 14817 . 2 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
43 chpval2 25363 . 2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
44 simpl 476 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
45 0red 10367 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ∈ ℝ)
46 1red 10364 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 1 ∈ ℝ)
47 0lt1 10881 . . . . . . . . 9 0 < 1
4847a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 < 1)
49 elfzuz2 12646 . . . . . . . . 9 (𝑘 ∈ (1...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ‘1))
50 eluzle 11988 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ≤ (⌊‘𝐴))
5150adantl 475 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → 1 ≤ (⌊‘𝐴))
52 simpl 476 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → 𝐴 ∈ ℝ)
53 1z 11742 . . . . . . . . . . 11 1 ∈ ℤ
54 flge 12908 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ 𝐴 ↔ 1 ≤ (⌊‘𝐴)))
5552, 53, 54sylancl 580 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → (1 ≤ 𝐴 ↔ 1 ≤ (⌊‘𝐴)))
5651, 55mpbird 249 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → 1 ≤ 𝐴)
5749, 56sylan2 586 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 1 ≤ 𝐴)
5845, 46, 44, 48, 57ltletrd 10523 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 < 𝐴)
5945, 44, 58ltled 10511 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐴)
60 elfznn 12670 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝐴)) → 𝑘 ∈ ℕ)
6160adantl 475 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝑘 ∈ ℕ)
6261nnrecred 11409 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1 / 𝑘) ∈ ℝ)
6344, 59, 62recxpcld 24875 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝐴𝑐(1 / 𝑘)) ∈ ℝ)
64 chtval 25256 . . . . 5 ((𝐴𝑐(1 / 𝑘)) ∈ ℝ → (θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
6563, 64syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
6665sumeq2dv 14817 . . 3 (𝐴 ∈ ℝ → Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
67 ppifi 25252 . . . 4 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
68 fzfid 13074 . . . 4 (𝐴 ∈ ℝ → (1...(⌊‘𝐴)) ∈ Fin)
692sseli 3823 . . . . . . . 8 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ ℙ)
70 elfznn 12670 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
7169, 70anim12i 606 . . . . . . 7 ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
7271a1i 11 . . . . . 6 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
73 0red 10367 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ∈ ℝ)
742a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ℙ)
7574sselda 3827 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
7675, 5syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
7776nnred 11374 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
7876nngt0d 11407 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝑝)
7973, 77, 12, 78, 26ltletrd 10523 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝐴)
8079ex 403 . . . . . . 7 (𝐴 ∈ ℝ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 0 < 𝐴))
8180adantrd 487 . . . . . 6 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 0 < 𝐴))
8272, 81jcad 508 . . . . 5 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)))
83 inss2 4060 . . . . . . . . 9 ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) ⊆ ℙ
8483sseli 3823 . . . . . . . 8 (𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) → 𝑝 ∈ ℙ)
8560, 84anim12ci 607 . . . . . . 7 ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
8685a1i 11 . . . . . 6 (𝐴 ∈ ℝ → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
8758ex 403 . . . . . . 7 (𝐴 ∈ ℝ → (𝑘 ∈ (1...(⌊‘𝐴)) → 0 < 𝐴))
8887adantrd 487 . . . . . 6 (𝐴 ∈ ℝ → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → 0 < 𝐴))
8986, 88jcad 508 . . . . 5 (𝐴 ∈ ℝ → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)))
90 elin 4025 . . . . . . . . 9 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ))
91 simprll 797 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℙ)
9291biantrud 527 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ)))
93 0red 10367 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ∈ ℝ)
94 simpl 476 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ)
9591, 5syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℕ)
9695nnred 11374 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℝ)
9795nnnn0d 11685 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℕ0)
9897nn0ge0d 11688 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ≤ 𝑝)
99 df-3an 1113 . . . . . . . . . . . . 13 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴))
10023, 99syl6bb 279 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴)))
101100baibd 535 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
10293, 94, 96, 98, 101syl22anc 872 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
10392, 102bitr3d 273 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ) ↔ 𝑝𝐴))
10490, 103syl5bb 275 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝𝐴))
105 simprr 789 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 < 𝐴)
10694, 105elrpd 12160 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ+)
107106relogcld 24775 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (log‘𝐴) ∈ ℝ)
10891, 15syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ (ℤ‘2))
109108, 18syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 1 < 𝑝)
11096, 109rplogcld 24781 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (log‘𝑝) ∈ ℝ+)
111107, 110rerpdivcld 12194 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
112 simprlr 798 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℕ)
113112nnzd 11816 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℤ)
114 flge 12908 . . . . . . . . . 10 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
115111, 113, 114syl2anc 579 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
116112nnnn0d 11685 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℕ0)
11795, 116nnexpcld 13333 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑘) ∈ ℕ)
118117nnrpd 12161 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑘) ∈ ℝ+)
119118, 106logled 24779 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (log‘(𝑝𝑘)) ≤ (log‘𝐴)))
12095nnrpd 12161 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℝ+)
121 relogexp 24748 . . . . . . . . . . . 12 ((𝑝 ∈ ℝ+𝑘 ∈ ℤ) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
122120, 113, 121syl2anc 579 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
123122breq1d 4885 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((log‘(𝑝𝑘)) ≤ (log‘𝐴) ↔ (𝑘 · (log‘𝑝)) ≤ (log‘𝐴)))
124112nnred 11374 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℝ)
125124, 107, 110lemuldivd 12212 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑘 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 𝑘 ≤ ((log‘𝐴) / (log‘𝑝))))
126119, 123, 1253bitrd 297 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑘 ≤ ((log‘𝐴) / (log‘𝑝))))
127 nnuz 12012 . . . . . . . . . . 11 ℕ = (ℤ‘1)
128112, 127syl6eleq 2916 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ (ℤ‘1))
129111flcld 12901 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
130 elfz5 12634 . . . . . . . . . 10 ((𝑘 ∈ (ℤ‘1) ∧ (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
131128, 129, 130syl2anc 579 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
132115, 126, 1313bitr4rd 304 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ (𝑝𝑘) ≤ 𝐴))
133104, 132anbi12d 624 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
13494flcld 12901 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (⌊‘𝐴) ∈ ℤ)
135 elfz5 12634 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ 𝑘 ≤ (⌊‘𝐴)))
136128, 134, 135syl2anc 579 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ 𝑘 ≤ (⌊‘𝐴)))
137 flge 12908 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘𝐴𝑘 ≤ (⌊‘𝐴)))
13894, 113, 137syl2anc 579 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘𝐴𝑘 ≤ (⌊‘𝐴)))
139136, 138bitr4d 274 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ 𝑘𝐴))
140 elin 4025 . . . . . . . . . 10 (𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) ↔ (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ))
14191biantrud 527 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ)))
142106rpge0d 12167 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ≤ 𝐴)
143112nnrecred 11409 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (1 / 𝑘) ∈ ℝ)
14494, 142, 143recxpcld 24875 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐(1 / 𝑘)) ∈ ℝ)
145 elicc2 12533 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝐴𝑐(1 / 𝑘)) ∈ ℝ) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (𝐴𝑐(1 / 𝑘)))))
146 df-3an 1113 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (𝐴𝑐(1 / 𝑘))) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
147145, 146syl6bb 279 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐴𝑐(1 / 𝑘)) ∈ ℝ) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (𝐴𝑐(1 / 𝑘)))))
148147baibd 535 . . . . . . . . . . . . 13 (((0 ∈ ℝ ∧ (𝐴𝑐(1 / 𝑘)) ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
14993, 144, 96, 98, 148syl22anc 872 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
150141, 149bitr3d 273 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ) ↔ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
15194, 142, 143cxpge0d 24876 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ≤ (𝐴𝑐(1 / 𝑘)))
152112nnrpd 12161 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℝ+)
15396, 98, 144, 151, 152cxple2d 24879 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ≤ (𝐴𝑐(1 / 𝑘)) ↔ (𝑝𝑐𝑘) ≤ ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘)))
15495nncnd 11375 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℂ)
155 cxpexp 24820 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑐𝑘) = (𝑝𝑘))
156154, 116, 155syl2anc 579 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑐𝑘) = (𝑝𝑘))
157112nncnd 11375 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℂ)
158112nnne0d 11408 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ≠ 0)
159157, 158recid2d 11130 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((1 / 𝑘) · 𝑘) = 1)
160159oveq2d 6926 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐((1 / 𝑘) · 𝑘)) = (𝐴𝑐1))
161106, 143, 157cxpmuld 24888 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐((1 / 𝑘) · 𝑘)) = ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘))
16294recnd 10392 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℂ)
163162cxp1d 24858 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐1) = 𝐴)
164160, 161, 1633eqtr3d 2869 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘) = 𝐴)
165156, 164breq12d 4888 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑐𝑘) ≤ ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘) ↔ (𝑝𝑘) ≤ 𝐴))
166150, 153, 1653bitrd 297 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ) ↔ (𝑝𝑘) ≤ 𝐴))
167140, 166syl5bb 275 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) ↔ (𝑝𝑘) ≤ 𝐴))
168139, 167anbi12d 624 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) ↔ (𝑘𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
169117nnred 11374 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑘) ∈ ℝ)
170 bernneq3 13293 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘2) ∧ 𝑘 ∈ ℕ0) → 𝑘 < (𝑝𝑘))
171108, 116, 170syl2anc 579 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 < (𝑝𝑘))
172124, 169, 171ltled 10511 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ≤ (𝑝𝑘))
173 letr 10457 . . . . . . . . . . 11 ((𝑘 ∈ ℝ ∧ (𝑝𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑘 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑘𝐴))
174124, 169, 94, 173syl3anc 1494 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑘 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑘𝐴))
175172, 174mpand 686 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑘𝐴))
176175pm4.71rd 558 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑘𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
177154exp1d 13304 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝↑1) = 𝑝)
17895nnge1d 11406 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 1 ≤ 𝑝)
17996, 178, 128leexp2ad 13344 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝↑1) ≤ (𝑝𝑘))
180177, 179eqbrtrrd 4899 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ≤ (𝑝𝑘))
181 letr 10457 . . . . . . . . . . 11 ((𝑝 ∈ ℝ ∧ (𝑝𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
18296, 169, 94, 181syl3anc 1494 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
183180, 182mpand 686 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑝𝐴))
184183pm4.71rd 558 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
185168, 176, 1843bitr2rd 300 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝐴 ∧ (𝑝𝑘) ≤ 𝐴) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ))))
186133, 185bitrd 271 . . . . . 6 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ))))
187186ex 403 . . . . 5 (𝐴 ∈ ℝ → (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)))))
18882, 89, 187pm5.21ndd 371 . . . 4 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ))))
1899adantrr 708 . . . 4 ((𝐴 ∈ ℝ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (log‘𝑝) ∈ ℂ)
19067, 68, 1, 188, 189fsumcom2 14887 . . 3 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
19166, 190eqtr4d 2864 . 2 (𝐴 ∈ ℝ → Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
19242, 43, 1913eqtr4d 2871 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  cin 3797  wss 3798   class class class wbr 4875  cfv 6127  (class class class)co 6910  Fincfn 8228  cc 10257  cr 10258  0cc0 10259  1c1 10260   · cmul 10264   < clt 10398  cle 10399   / cdiv 11016  cn 11357  2c2 11413  0cn0 11625  cz 11711  cuz 11975  +crp 12119  [,]cicc 12473  ...cfz 12626  cfl 12893  cexp 13161  chash 13417  Σcsu 14800  cprime 15764  logclog 24707  𝑐ccxp 24708  θccht 25237  ψcchp 25239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ioc 12475  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-fac 13361  df-bc 13390  df-hash 13418  df-shft 14191  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-limsup 14586  df-clim 14603  df-rlim 14604  df-sum 14801  df-ef 15177  df-sin 15179  df-cos 15180  df-pi 15182  df-dvds 15365  df-gcd 15597  df-prm 15765  df-pc 15920  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-mulg 17902  df-cntz 18107  df-cmn 18555  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-fbas 20110  df-fg 20111  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cld 21201  df-ntr 21202  df-cls 21203  df-nei 21280  df-lp 21318  df-perf 21319  df-cn 21409  df-cnp 21410  df-haus 21497  df-tx 21743  df-hmeo 21936  df-fil 22027  df-fm 22119  df-flim 22120  df-flf 22121  df-xms 22502  df-ms 22503  df-tms 22504  df-cncf 23058  df-limc 24036  df-dv 24037  df-log 24709  df-cxp 24710  df-cht 25243  df-vma 25244  df-chp 25245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator