Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtsum Structured version   Visualization version   GIF version

Theorem chpchtsum 25789
 Description: The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpchtsum (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))))
Distinct variable group:   𝐴,𝑘

Proof of Theorem chpchtsum
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13335 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
2 simpr 487 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
32elin2d 4175 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
4 prmnn 16012 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
53, 4syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
65nnrpd 12423 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
76relogcld 25200 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
87recnd 10663 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
9 fsumconst 15139 . . . . 5 (((1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
101, 8, 9syl2anc 586 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
11 simpl 485 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
12 1red 10636 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ∈ ℝ)
135nnred 11647 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
14 prmuz2 16034 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
153, 14syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
16 eluz2gt1 12314 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
1715, 16syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
182elin1d 4174 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴))
19 0re 10637 . . . . . . . . . . . . . 14 0 ∈ ℝ
20 elicc2 12795 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
2119, 11, 20sylancr 589 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
2218, 21mpbid 234 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
2322simp3d 1140 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
2412, 13, 11, 17, 23ltletrd 10794 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝐴)
2511, 24rplogcld 25206 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ+)
2613, 17rplogcld 25206 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
2725, 26rpdivcld 12442 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ+)
2827rpred 12425 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
2927rpge0d 12429 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((log‘𝐴) / (log‘𝑝)))
30 flge0nn0 13184 . . . . . . 7 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
3128, 29, 30syl2anc 586 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
32 hashfz1 13700 . . . . . 6 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0 → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
3331, 32syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
3433oveq1d 7165 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)) = ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)))
3528flcld 13162 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
3635zcnd 12082 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℂ)
3736, 8mulcomd 10656 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
3810, 34, 373eqtrrd 2861 . . 3 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
3938sumeq2dv 15054 . 2 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
40 chpval2 25788 . 2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
41 simpl 485 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
42 0red 10638 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ∈ ℝ)
43 1red 10636 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 1 ∈ ℝ)
44 0lt1 11156 . . . . . . . . 9 0 < 1
4544a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 < 1)
46 elfzuz2 12906 . . . . . . . . 9 (𝑘 ∈ (1...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ‘1))
47 eluzle 12250 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ≤ (⌊‘𝐴))
4847adantl 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → 1 ≤ (⌊‘𝐴))
49 simpl 485 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → 𝐴 ∈ ℝ)
50 1z 12006 . . . . . . . . . . 11 1 ∈ ℤ
51 flge 13169 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ 𝐴 ↔ 1 ≤ (⌊‘𝐴)))
5249, 50, 51sylancl 588 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → (1 ≤ 𝐴 ↔ 1 ≤ (⌊‘𝐴)))
5348, 52mpbird 259 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → 1 ≤ 𝐴)
5446, 53sylan2 594 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 1 ≤ 𝐴)
5542, 43, 41, 45, 54ltletrd 10794 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 < 𝐴)
5642, 41, 55ltled 10782 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐴)
57 elfznn 12930 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝐴)) → 𝑘 ∈ ℕ)
5857adantl 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝑘 ∈ ℕ)
5958nnrecred 11682 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1 / 𝑘) ∈ ℝ)
6041, 56, 59recxpcld 25300 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝐴𝑐(1 / 𝑘)) ∈ ℝ)
61 chtval 25681 . . . . 5 ((𝐴𝑐(1 / 𝑘)) ∈ ℝ → (θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
6260, 61syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
6362sumeq2dv 15054 . . 3 (𝐴 ∈ ℝ → Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
64 ppifi 25677 . . . 4 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
65 fzfid 13335 . . . 4 (𝐴 ∈ ℝ → (1...(⌊‘𝐴)) ∈ Fin)
66 elinel2 4172 . . . . . . . 8 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ ℙ)
67 elfznn 12930 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
6866, 67anim12i 614 . . . . . . 7 ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
6968a1i 11 . . . . . 6 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
70 0red 10638 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ∈ ℝ)
71 inss2 4205 . . . . . . . . . . . . 13 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
7271a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ℙ)
7372sselda 3966 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
7473, 4syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
7574nnred 11647 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
7674nngt0d 11680 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝑝)
7770, 75, 11, 76, 23ltletrd 10794 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝐴)
7877ex 415 . . . . . . 7 (𝐴 ∈ ℝ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 0 < 𝐴))
7978adantrd 494 . . . . . 6 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 0 < 𝐴))
8069, 79jcad 515 . . . . 5 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)))
81 elinel2 4172 . . . . . . . 8 (𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) → 𝑝 ∈ ℙ)
8257, 81anim12ci 615 . . . . . . 7 ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
8382a1i 11 . . . . . 6 (𝐴 ∈ ℝ → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
8455ex 415 . . . . . . 7 (𝐴 ∈ ℝ → (𝑘 ∈ (1...(⌊‘𝐴)) → 0 < 𝐴))
8584adantrd 494 . . . . . 6 (𝐴 ∈ ℝ → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → 0 < 𝐴))
8683, 85jcad 515 . . . . 5 (𝐴 ∈ ℝ → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)))
87 elin 4168 . . . . . . . . 9 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ))
88 simprll 777 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℙ)
8988biantrud 534 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ)))
90 0red 10638 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ∈ ℝ)
91 simpl 485 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ)
9288, 4syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℕ)
9392nnred 11647 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℝ)
9492nnnn0d 11949 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℕ0)
9594nn0ge0d 11952 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ≤ 𝑝)
96 df-3an 1085 . . . . . . . . . . . . 13 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴))
9720, 96syl6bb 289 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴)))
9897baibd 542 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
9990, 91, 93, 95, 98syl22anc 836 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
10089, 99bitr3d 283 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ) ↔ 𝑝𝐴))
10187, 100syl5bb 285 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝𝐴))
102 simprr 771 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 < 𝐴)
10391, 102elrpd 12422 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ+)
104103relogcld 25200 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (log‘𝐴) ∈ ℝ)
10588, 14syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ (ℤ‘2))
106105, 16syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 1 < 𝑝)
10793, 106rplogcld 25206 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (log‘𝑝) ∈ ℝ+)
108104, 107rerpdivcld 12456 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
109 simprlr 778 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℕ)
110109nnzd 12080 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℤ)
111 flge 13169 . . . . . . . . . 10 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
112108, 110, 111syl2anc 586 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
113109nnnn0d 11949 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℕ0)
11492, 113nnexpcld 13600 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑘) ∈ ℕ)
115114nnrpd 12423 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑘) ∈ ℝ+)
116115, 103logled 25204 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (log‘(𝑝𝑘)) ≤ (log‘𝐴)))
11792nnrpd 12423 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℝ+)
118 relogexp 25173 . . . . . . . . . . . 12 ((𝑝 ∈ ℝ+𝑘 ∈ ℤ) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
119117, 110, 118syl2anc 586 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
120119breq1d 5068 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((log‘(𝑝𝑘)) ≤ (log‘𝐴) ↔ (𝑘 · (log‘𝑝)) ≤ (log‘𝐴)))
121109nnred 11647 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℝ)
122121, 104, 107lemuldivd 12474 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑘 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 𝑘 ≤ ((log‘𝐴) / (log‘𝑝))))
123116, 120, 1223bitrd 307 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑘 ≤ ((log‘𝐴) / (log‘𝑝))))
124 nnuz 12275 . . . . . . . . . . 11 ℕ = (ℤ‘1)
125109, 124eleqtrdi 2923 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ (ℤ‘1))
126108flcld 13162 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
127 elfz5 12894 . . . . . . . . . 10 ((𝑘 ∈ (ℤ‘1) ∧ (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
128125, 126, 127syl2anc 586 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
129112, 123, 1283bitr4rd 314 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ (𝑝𝑘) ≤ 𝐴))
130101, 129anbi12d 632 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
13191flcld 13162 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (⌊‘𝐴) ∈ ℤ)
132 elfz5 12894 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ 𝑘 ≤ (⌊‘𝐴)))
133125, 131, 132syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ 𝑘 ≤ (⌊‘𝐴)))
134 flge 13169 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘𝐴𝑘 ≤ (⌊‘𝐴)))
13591, 110, 134syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘𝐴𝑘 ≤ (⌊‘𝐴)))
136133, 135bitr4d 284 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ 𝑘𝐴))
137 elin 4168 . . . . . . . . . 10 (𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) ↔ (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ))
13888biantrud 534 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ)))
139103rpge0d 12429 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ≤ 𝐴)
140109nnrecred 11682 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (1 / 𝑘) ∈ ℝ)
14191, 139, 140recxpcld 25300 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐(1 / 𝑘)) ∈ ℝ)
142 elicc2 12795 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝐴𝑐(1 / 𝑘)) ∈ ℝ) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (𝐴𝑐(1 / 𝑘)))))
143 df-3an 1085 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (𝐴𝑐(1 / 𝑘))) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
144142, 143syl6bb 289 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐴𝑐(1 / 𝑘)) ∈ ℝ) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (𝐴𝑐(1 / 𝑘)))))
145144baibd 542 . . . . . . . . . . . . 13 (((0 ∈ ℝ ∧ (𝐴𝑐(1 / 𝑘)) ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
14690, 141, 93, 95, 145syl22anc 836 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
147138, 146bitr3d 283 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ) ↔ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
14891, 139, 140cxpge0d 25301 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ≤ (𝐴𝑐(1 / 𝑘)))
149109nnrpd 12423 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℝ+)
15093, 95, 141, 148, 149cxple2d 25304 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ≤ (𝐴𝑐(1 / 𝑘)) ↔ (𝑝𝑐𝑘) ≤ ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘)))
15192nncnd 11648 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℂ)
152 cxpexp 25245 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑐𝑘) = (𝑝𝑘))
153151, 113, 152syl2anc 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑐𝑘) = (𝑝𝑘))
154109nncnd 11648 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℂ)
155109nnne0d 11681 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ≠ 0)
156154, 155recid2d 11406 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((1 / 𝑘) · 𝑘) = 1)
157156oveq2d 7166 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐((1 / 𝑘) · 𝑘)) = (𝐴𝑐1))
158103, 140, 154cxpmuld 25313 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐((1 / 𝑘) · 𝑘)) = ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘))
15991recnd 10663 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℂ)
160159cxp1d 25283 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐1) = 𝐴)
161157, 158, 1603eqtr3d 2864 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘) = 𝐴)
162153, 161breq12d 5071 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑐𝑘) ≤ ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘) ↔ (𝑝𝑘) ≤ 𝐴))
163147, 150, 1623bitrd 307 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ) ↔ (𝑝𝑘) ≤ 𝐴))
164137, 163syl5bb 285 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) ↔ (𝑝𝑘) ≤ 𝐴))
165136, 164anbi12d 632 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) ↔ (𝑘𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
166114nnred 11647 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑘) ∈ ℝ)
167 bernneq3 13586 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘2) ∧ 𝑘 ∈ ℕ0) → 𝑘 < (𝑝𝑘))
168105, 113, 167syl2anc 586 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 < (𝑝𝑘))
169121, 166, 168ltled 10782 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ≤ (𝑝𝑘))
170 letr 10728 . . . . . . . . . . 11 ((𝑘 ∈ ℝ ∧ (𝑝𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑘 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑘𝐴))
171121, 166, 91, 170syl3anc 1367 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑘 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑘𝐴))
172169, 171mpand 693 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑘𝐴))
173172pm4.71rd 565 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑘𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
174151exp1d 13499 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝↑1) = 𝑝)
17592nnge1d 11679 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 1 ≤ 𝑝)
17693, 175, 125leexp2ad 13611 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝↑1) ≤ (𝑝𝑘))
177174, 176eqbrtrrd 5082 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ≤ (𝑝𝑘))
178 letr 10728 . . . . . . . . . . 11 ((𝑝 ∈ ℝ ∧ (𝑝𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
17993, 166, 91, 178syl3anc 1367 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
180177, 179mpand 693 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑝𝐴))
181180pm4.71rd 565 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
182165, 173, 1813bitr2rd 310 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝐴 ∧ (𝑝𝑘) ≤ 𝐴) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ))))
183130, 182bitrd 281 . . . . . 6 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ))))
184183ex 415 . . . . 5 (𝐴 ∈ ℝ → (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)))))
18580, 86, 184pm5.21ndd 383 . . . 4 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ))))
1868adantrr 715 . . . 4 ((𝐴 ∈ ℝ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (log‘𝑝) ∈ ℂ)
18764, 65, 1, 185, 186fsumcom2 15123 . . 3 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
18863, 187eqtr4d 2859 . 2 (𝐴 ∈ ℝ → Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
18939, 40, 1883eqtr4d 2866 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110   ∩ cin 3934   ⊆ wss 3935   class class class wbr 5058  ‘cfv 6349  (class class class)co 7150  Fincfn 8503  ℂcc 10529  ℝcr 10530  0cc0 10531  1c1 10532   · cmul 10536   < clt 10669   ≤ cle 10670   / cdiv 11291  ℕcn 11632  2c2 11686  ℕ0cn0 11891  ℤcz 11975  ℤ≥cuz 12237  ℝ+crp 12383  [,]cicc 12735  ...cfz 12886  ⌊cfl 13154  ↑cexp 13423  ♯chash 13684  Σcsu 15036  ℙcprime 16009  logclog 25132  ↑𝑐ccxp 25133  θccht 25662  ψcchp 25664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-dvds 15602  df-gcd 15838  df-prm 16010  df-pc 16168  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134  df-cxp 25135  df-cht 25668  df-vma 25669  df-chp 25670 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator