MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtsum Structured version   Visualization version   GIF version

Theorem chpchtsum 27157
Description: The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpchtsum (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))))
Distinct variable group:   𝐴,𝑘

Proof of Theorem chpchtsum
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13880 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
2 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
32elin2d 4152 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
4 prmnn 16585 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
53, 4syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
65nnrpd 12932 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
76relogcld 26559 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
87recnd 11140 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
9 fsumconst 15697 . . . . 5 (((1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
101, 8, 9syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
11 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
12 1red 11113 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ∈ ℝ)
135nnred 12140 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
14 prmuz2 16607 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
153, 14syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
16 eluz2gt1 12818 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
1715, 16syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
182elin1d 4151 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴))
19 0re 11114 . . . . . . . . . . . . . 14 0 ∈ ℝ
20 elicc2 13311 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
2119, 11, 20sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
2218, 21mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
2322simp3d 1144 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
2412, 13, 11, 17, 23ltletrd 11273 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝐴)
2511, 24rplogcld 26565 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ+)
2613, 17rplogcld 26565 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
2725, 26rpdivcld 12951 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ+)
2827rpred 12934 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
2927rpge0d 12938 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((log‘𝐴) / (log‘𝑝)))
30 flge0nn0 13724 . . . . . . 7 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
3128, 29, 30syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
32 hashfz1 14253 . . . . . 6 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0 → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
3331, 32syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
3433oveq1d 7361 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)) = ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)))
3528flcld 13702 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
3635zcnd 12578 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℂ)
3736, 8mulcomd 11133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
3810, 34, 373eqtrrd 2771 . . 3 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
3938sumeq2dv 15609 . 2 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
40 chpval2 27156 . 2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
41 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
42 0red 11115 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ∈ ℝ)
43 1red 11113 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 1 ∈ ℝ)
44 0lt1 11639 . . . . . . . . 9 0 < 1
4544a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 < 1)
46 elfzuz2 13429 . . . . . . . . 9 (𝑘 ∈ (1...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ‘1))
47 eluzle 12745 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ≤ (⌊‘𝐴))
4847adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → 1 ≤ (⌊‘𝐴))
49 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → 𝐴 ∈ ℝ)
50 1z 12502 . . . . . . . . . . 11 1 ∈ ℤ
51 flge 13709 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ 𝐴 ↔ 1 ≤ (⌊‘𝐴)))
5249, 50, 51sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → (1 ≤ 𝐴 ↔ 1 ≤ (⌊‘𝐴)))
5348, 52mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘1)) → 1 ≤ 𝐴)
5446, 53sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 1 ≤ 𝐴)
5542, 43, 41, 45, 54ltletrd 11273 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 < 𝐴)
5642, 41, 55ltled 11261 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐴)
57 elfznn 13453 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝐴)) → 𝑘 ∈ ℕ)
5857adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝑘 ∈ ℕ)
5958nnrecred 12176 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1 / 𝑘) ∈ ℝ)
6041, 56, 59recxpcld 26659 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝐴𝑐(1 / 𝑘)) ∈ ℝ)
61 chtval 27047 . . . . 5 ((𝐴𝑐(1 / 𝑘)) ∈ ℝ → (θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
6260, 61syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
6362sumeq2dv 15609 . . 3 (𝐴 ∈ ℝ → Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
64 ppifi 27043 . . . 4 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
65 fzfid 13880 . . . 4 (𝐴 ∈ ℝ → (1...(⌊‘𝐴)) ∈ Fin)
66 elinel2 4149 . . . . . . . 8 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ ℙ)
67 elfznn 13453 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
6866, 67anim12i 613 . . . . . . 7 ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
6968a1i 11 . . . . . 6 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
70 0red 11115 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ∈ ℝ)
71 inss2 4185 . . . . . . . . . . . . 13 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
7271a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ℙ)
7372sselda 3929 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
7473, 4syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
7574nnred 12140 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
7674nngt0d 12174 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝑝)
7770, 75, 11, 76, 23ltletrd 11273 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝐴)
7877ex 412 . . . . . . 7 (𝐴 ∈ ℝ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 0 < 𝐴))
7978adantrd 491 . . . . . 6 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 0 < 𝐴))
8069, 79jcad 512 . . . . 5 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)))
81 elinel2 4149 . . . . . . . 8 (𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) → 𝑝 ∈ ℙ)
8257, 81anim12ci 614 . . . . . . 7 ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
8382a1i 11 . . . . . 6 (𝐴 ∈ ℝ → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
8455ex 412 . . . . . . 7 (𝐴 ∈ ℝ → (𝑘 ∈ (1...(⌊‘𝐴)) → 0 < 𝐴))
8584adantrd 491 . . . . . 6 (𝐴 ∈ ℝ → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → 0 < 𝐴))
8683, 85jcad 512 . . . . 5 (𝐴 ∈ ℝ → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)))
87 elin 3913 . . . . . . . . 9 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ))
88 simprll 778 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℙ)
8988biantrud 531 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ)))
90 0red 11115 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ∈ ℝ)
91 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ)
9288, 4syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℕ)
9392nnred 12140 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℝ)
9492nnnn0d 12442 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℕ0)
9594nn0ge0d 12445 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ≤ 𝑝)
96 df-3an 1088 . . . . . . . . . . . . 13 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴))
9720, 96bitrdi 287 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴)))
9897baibd 539 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
9990, 91, 93, 95, 98syl22anc 838 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
10089, 99bitr3d 281 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ) ↔ 𝑝𝐴))
10187, 100bitrid 283 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝𝐴))
102 simprr 772 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 < 𝐴)
10391, 102elrpd 12931 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ+)
104103relogcld 26559 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (log‘𝐴) ∈ ℝ)
10588, 14syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ (ℤ‘2))
106105, 16syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 1 < 𝑝)
10793, 106rplogcld 26565 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (log‘𝑝) ∈ ℝ+)
108104, 107rerpdivcld 12965 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
109 simprlr 779 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℕ)
110109nnzd 12495 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℤ)
111 flge 13709 . . . . . . . . . 10 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
112108, 110, 111syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
113109nnnn0d 12442 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℕ0)
11492, 113nnexpcld 14152 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑘) ∈ ℕ)
115114nnrpd 12932 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑘) ∈ ℝ+)
116115, 103logled 26563 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (log‘(𝑝𝑘)) ≤ (log‘𝐴)))
11792nnrpd 12932 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℝ+)
118 relogexp 26532 . . . . . . . . . . . 12 ((𝑝 ∈ ℝ+𝑘 ∈ ℤ) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
119117, 110, 118syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
120119breq1d 5099 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((log‘(𝑝𝑘)) ≤ (log‘𝐴) ↔ (𝑘 · (log‘𝑝)) ≤ (log‘𝐴)))
121109nnred 12140 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℝ)
122121, 104, 107lemuldivd 12983 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑘 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 𝑘 ≤ ((log‘𝐴) / (log‘𝑝))))
123116, 120, 1223bitrd 305 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑘 ≤ ((log‘𝐴) / (log‘𝑝))))
124 nnuz 12775 . . . . . . . . . . 11 ℕ = (ℤ‘1)
125109, 124eleqtrdi 2841 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ (ℤ‘1))
126108flcld 13702 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
127 elfz5 13416 . . . . . . . . . 10 ((𝑘 ∈ (ℤ‘1) ∧ (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
128125, 126, 127syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
129112, 123, 1283bitr4rd 312 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ (𝑝𝑘) ≤ 𝐴))
130101, 129anbi12d 632 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
13191flcld 13702 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (⌊‘𝐴) ∈ ℤ)
132 elfz5 13416 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ 𝑘 ≤ (⌊‘𝐴)))
133125, 131, 132syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ 𝑘 ≤ (⌊‘𝐴)))
134 flge 13709 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘𝐴𝑘 ≤ (⌊‘𝐴)))
13591, 110, 134syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘𝐴𝑘 ≤ (⌊‘𝐴)))
136133, 135bitr4d 282 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ 𝑘𝐴))
137 elin 3913 . . . . . . . . . 10 (𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) ↔ (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ))
13888biantrud 531 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ)))
139103rpge0d 12938 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ≤ 𝐴)
140109nnrecred 12176 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (1 / 𝑘) ∈ ℝ)
14191, 139, 140recxpcld 26659 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐(1 / 𝑘)) ∈ ℝ)
142 elicc2 13311 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝐴𝑐(1 / 𝑘)) ∈ ℝ) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (𝐴𝑐(1 / 𝑘)))))
143 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (𝐴𝑐(1 / 𝑘))) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
144142, 143bitrdi 287 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐴𝑐(1 / 𝑘)) ∈ ℝ) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (𝐴𝑐(1 / 𝑘)))))
145144baibd 539 . . . . . . . . . . . . 13 (((0 ∈ ℝ ∧ (𝐴𝑐(1 / 𝑘)) ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
14690, 141, 93, 95, 145syl22anc 838 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ↔ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
147138, 146bitr3d 281 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ) ↔ 𝑝 ≤ (𝐴𝑐(1 / 𝑘))))
14891, 139, 140cxpge0d 26660 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 0 ≤ (𝐴𝑐(1 / 𝑘)))
149109nnrpd 12932 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℝ+)
15093, 95, 141, 148, 149cxple2d 26663 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ≤ (𝐴𝑐(1 / 𝑘)) ↔ (𝑝𝑐𝑘) ≤ ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘)))
15192nncnd 12141 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ∈ ℂ)
152 cxpexp 26604 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑐𝑘) = (𝑝𝑘))
153151, 113, 152syl2anc 584 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑐𝑘) = (𝑝𝑘))
154109nncnd 12141 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ∈ ℂ)
155109nnne0d 12175 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ≠ 0)
156154, 155recid2d 11893 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((1 / 𝑘) · 𝑘) = 1)
157156oveq2d 7362 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐((1 / 𝑘) · 𝑘)) = (𝐴𝑐1))
158103, 140, 154cxpmuld 26673 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐((1 / 𝑘) · 𝑘)) = ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘))
15991recnd 11140 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℂ)
160159cxp1d 26642 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝐴𝑐1) = 𝐴)
161157, 158, 1603eqtr3d 2774 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘) = 𝐴)
162153, 161breq12d 5102 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑐𝑘) ≤ ((𝐴𝑐(1 / 𝑘))↑𝑐𝑘) ↔ (𝑝𝑘) ≤ 𝐴))
163147, 150, 1623bitrd 305 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ (0[,](𝐴𝑐(1 / 𝑘))) ∧ 𝑝 ∈ ℙ) ↔ (𝑝𝑘) ≤ 𝐴))
164137, 163bitrid 283 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ) ↔ (𝑝𝑘) ≤ 𝐴))
165136, 164anbi12d 632 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)) ↔ (𝑘𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
166114nnred 12140 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝𝑘) ∈ ℝ)
167 bernneq3 14138 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘2) ∧ 𝑘 ∈ ℕ0) → 𝑘 < (𝑝𝑘))
168105, 113, 167syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 < (𝑝𝑘))
169121, 166, 168ltled 11261 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑘 ≤ (𝑝𝑘))
170 letr 11207 . . . . . . . . . . 11 ((𝑘 ∈ ℝ ∧ (𝑝𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑘 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑘𝐴))
171121, 166, 91, 170syl3anc 1373 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑘 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑘𝐴))
172169, 171mpand 695 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑘𝐴))
173172pm4.71rd 562 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑘𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
174151exp1d 14048 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝↑1) = 𝑝)
17592nnge1d 12173 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 1 ≤ 𝑝)
17693, 175, 125leexp2ad 14161 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → (𝑝↑1) ≤ (𝑝𝑘))
177174, 176eqbrtrrd 5113 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → 𝑝 ≤ (𝑝𝑘))
178 letr 11207 . . . . . . . . . . 11 ((𝑝 ∈ ℝ ∧ (𝑝𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
17993, 166, 91, 178syl3anc 1373 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
180177, 179mpand 695 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑝𝐴))
181180pm4.71rd 562 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝𝐴 ∧ (𝑝𝑘) ≤ 𝐴)))
182165, 173, 1813bitr2rd 308 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝𝐴 ∧ (𝑝𝑘) ≤ 𝐴) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ))))
183130, 182bitrd 279 . . . . . 6 ((𝐴 ∈ ℝ ∧ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ))))
184183ex 412 . . . . 5 (𝐴 ∈ ℝ → (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 0 < 𝐴) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)))))
18580, 86, 184pm5.21ndd 379 . . . 4 (𝐴 ∈ ℝ → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ))))
1868adantrr 717 . . . 4 ((𝐴 ∈ ℝ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (log‘𝑝) ∈ ℂ)
18764, 65, 1, 185, 186fsumcom2 15681 . . 3 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑝 ∈ ((0[,](𝐴𝑐(1 / 𝑘))) ∩ ℙ)(log‘𝑝))
18863, 187eqtr4d 2769 . 2 (𝐴 ∈ ℝ → Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
18939, 40, 1883eqtr4d 2776 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897   class class class wbr 5089  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  +crp 12890  [,]cicc 13248  ...cfz 13407  cfl 13694  cexp 13968  chash 14237  Σcsu 15593  cprime 16582  logclog 26490  𝑐ccxp 26491  θccht 27028  ψcchp 27030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493  df-cht 27034  df-vma 27035  df-chp 27036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator