MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnumdenbi Structured version   Visualization version   GIF version

Theorem qnumdenbi 16714
Description: Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumdenbi ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))

Proof of Theorem qnumdenbi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 qredeu 16628 . . . . . . 7 (𝐴 ∈ ℚ → ∃!𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))
2 riotacl 7361 . . . . . . 7 (∃!𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))) → (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) ∈ (ℤ × ℕ))
3 1st2nd2 8007 . . . . . . 7 ((𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) ∈ (ℤ × ℕ) → (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨(1st ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))), (2nd ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))))⟩)
41, 2, 33syl 18 . . . . . 6 (𝐴 ∈ ℚ → (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨(1st ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))), (2nd ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))))⟩)
5 qnumval 16707 . . . . . . 7 (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))))
6 qdenval 16708 . . . . . . 7 (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))))
75, 6opeq12d 4845 . . . . . 6 (𝐴 ∈ ℚ → ⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨(1st ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))), (2nd ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))))⟩)
84, 7eqtr4d 2767 . . . . 5 (𝐴 ∈ ℚ → (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨(numer‘𝐴), (denom‘𝐴)⟩)
98eqeq1d 2731 . . . 4 (𝐴 ∈ ℚ → ((𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩ ↔ ⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨𝐵, 𝐶⟩))
1093ad2ant1 1133 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩ ↔ ⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨𝐵, 𝐶⟩))
11 fvex 6871 . . . 4 (numer‘𝐴) ∈ V
12 fvex 6871 . . . 4 (denom‘𝐴) ∈ V
1311, 12opth 5436 . . 3 (⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨𝐵, 𝐶⟩ ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))
1410, 13bitr2di 288 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶) ↔ (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩))
15 opelxpi 5675 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ⟨𝐵, 𝐶⟩ ∈ (ℤ × ℕ))
16153adant1 1130 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ⟨𝐵, 𝐶⟩ ∈ (ℤ × ℕ))
1713ad2ant1 1133 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ∃!𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))
18 fveq2 6858 . . . . . . 7 (𝑎 = ⟨𝐵, 𝐶⟩ → (1st𝑎) = (1st ‘⟨𝐵, 𝐶⟩))
19 fveq2 6858 . . . . . . 7 (𝑎 = ⟨𝐵, 𝐶⟩ → (2nd𝑎) = (2nd ‘⟨𝐵, 𝐶⟩))
2018, 19oveq12d 7405 . . . . . 6 (𝑎 = ⟨𝐵, 𝐶⟩ → ((1st𝑎) gcd (2nd𝑎)) = ((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)))
2120eqeq1d 2731 . . . . 5 (𝑎 = ⟨𝐵, 𝐶⟩ → (((1st𝑎) gcd (2nd𝑎)) = 1 ↔ ((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1))
2218, 19oveq12d 7405 . . . . . 6 (𝑎 = ⟨𝐵, 𝐶⟩ → ((1st𝑎) / (2nd𝑎)) = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩)))
2322eqeq2d 2740 . . . . 5 (𝑎 = ⟨𝐵, 𝐶⟩ → (𝐴 = ((1st𝑎) / (2nd𝑎)) ↔ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩))))
2421, 23anbi12d 632 . . . 4 (𝑎 = ⟨𝐵, 𝐶⟩ → ((((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))) ↔ (((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ∧ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩)))))
2524riota2 7369 . . 3 ((⟨𝐵, 𝐶⟩ ∈ (ℤ × ℕ) ∧ ∃!𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) → ((((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ∧ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩))) ↔ (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩))
2616, 17, 25syl2anc 584 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ∧ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩))) ↔ (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩))
27 op1stg 7980 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (1st ‘⟨𝐵, 𝐶⟩) = 𝐵)
28 op2ndg 7981 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (2nd ‘⟨𝐵, 𝐶⟩) = 𝐶)
2927, 28oveq12d 7405 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = (𝐵 gcd 𝐶))
30293adant1 1130 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = (𝐵 gcd 𝐶))
3130eqeq1d 2731 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ↔ (𝐵 gcd 𝐶) = 1))
32273adant1 1130 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (1st ‘⟨𝐵, 𝐶⟩) = 𝐵)
33283adant1 1130 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (2nd ‘⟨𝐵, 𝐶⟩) = 𝐶)
3432, 33oveq12d 7405 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩)) = (𝐵 / 𝐶))
3534eqeq2d 2740 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩)) ↔ 𝐴 = (𝐵 / 𝐶)))
3631, 35anbi12d 632 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ∧ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩))) ↔ ((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶))))
3714, 26, 363bitr2rd 308 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃!wreu 3352  cop 4595   × cxp 5636  cfv 6511  crio 7343  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  1c1 11069   / cdiv 11835  cn 12186  cz 12529  cq 12907   gcd cgcd 16464  numercnumer 16703  denomcdenom 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706
This theorem is referenced by:  qnumdencoprm  16715  qeqnumdivden  16716  divnumden  16718  numdensq  16724  numdenexp  16730  znumd  32737  zdend  32738  numdenneg  32739  qqh0  33974  qqh1  33975
  Copyright terms: Public domain W3C validator