MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2lem Structured version   Visualization version   GIF version

Theorem mbfmulc2lem 25589
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfmulc2re.1 (𝜑𝐹 ∈ MblFn)
mbfmulc2re.2 (𝜑𝐵 ∈ ℝ)
mbfmulc2lem.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
mbfmulc2lem (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)

Proof of Theorem mbfmulc2lem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 11224 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
21adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
3 mbfmulc2re.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 fconst6g 6786 . . . . . 6 (𝐵 ∈ ℝ → (𝐴 × {𝐵}):𝐴⟶ℝ)
53, 4syl 17 . . . . 5 (𝜑 → (𝐴 × {𝐵}):𝐴⟶ℝ)
6 mbfmulc2lem.3 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
76fdmd 6733 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
8 mbfmulc2re.1 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
9 mbfdm 25568 . . . . . . 7 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
108, 9syl 17 . . . . . 6 (𝜑 → dom 𝐹 ∈ dom vol)
117, 10eqeltrrd 2830 . . . . 5 (𝜑𝐴 ∈ dom vol)
12 inidm 4219 . . . . 5 (𝐴𝐴) = 𝐴
132, 5, 6, 11, 11, 12off 7703 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
1413adantr 480 . . 3 ((𝜑𝐵 < 0) → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
1511adantr 480 . . 3 ((𝜑𝐵 < 0) → 𝐴 ∈ dom vol)
16 simprl 770 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ)
1716rexrd 11295 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ*)
18 elioopnf 13453 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
1917, 18syl 17 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
2013ffvelcdmda 7094 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
2120ad2ant2rl 748 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
2221biantrurd 532 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
236ffvelcdmda 7094 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
2423ad2ant2rl 748 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℝ)
2524biantrurd 532 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (𝑦 / 𝐵) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
26 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑧𝐴)
2711ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐴 ∈ dom vol)
283ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ)
296ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐹:𝐴⟶ℝ)
3029ffnd 6723 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐹 Fn 𝐴)
31 eqidd 2729 . . . . . . . . . . . . . 14 ((((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) ∧ 𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
3227, 28, 30, 31ofc1 7711 . . . . . . . . . . . . 13 ((((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) ∧ 𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
3326, 32mpdan 686 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
3433breq2d 5160 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
3533, 21eqeltrrd 2830 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐵 · (𝐹𝑧)) ∈ ℝ)
3616, 35ltnegd 11823 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (𝐵 · (𝐹𝑧)) ↔ -(𝐵 · (𝐹𝑧)) < -𝑦))
3728recnd 11273 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℂ)
3824recnd 11273 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℂ)
3937, 38mulneg1d 11698 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝐵 · (𝐹𝑧)) = -(𝐵 · (𝐹𝑧)))
4039breq1d 5158 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ -(𝐵 · (𝐹𝑧)) < -𝑦))
4116renegcld 11672 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → -𝑦 ∈ ℝ)
4228renegcld 11672 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → -𝐵 ∈ ℝ)
43 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 < 0)
4428lt0neg1d 11814 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐵 < 0 ↔ 0 < -𝐵))
4543, 44mpbid 231 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 0 < -𝐵)
46 ltmuldiv2 12119 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℝ ∧ -𝑦 ∈ ℝ ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ (𝐹𝑧) < (-𝑦 / -𝐵)))
4724, 41, 42, 45, 46syl112anc 1372 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ (𝐹𝑧) < (-𝑦 / -𝐵)))
4836, 40, 473bitr2rd 308 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (-𝑦 / -𝐵) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
4916recnd 11273 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℂ)
5043lt0ne0d 11810 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ≠ 0)
5149, 37, 50div2negd 12036 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝑦 / -𝐵) = (𝑦 / 𝐵))
5251breq2d 5160 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (-𝑦 / -𝐵) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
5334, 48, 523bitr2d 307 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
5416, 28, 50redivcld 12073 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ)
5554rexrd 11295 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ*)
56 elioomnf 13454 . . . . . . . . . . 11 ((𝑦 / 𝐵) ∈ ℝ* → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
5755, 56syl 17 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
5825, 53, 573bitr4d 311 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
5919, 22, 583bitr2d 307 . . . . . . . 8 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
6059anassrs 467 . . . . . . 7 ((((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
6160pm5.32da 578 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
6213ffnd 6723 . . . . . . . 8 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
6362ad2antrr 725 . . . . . . 7 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
64 elpreima 7067 . . . . . . 7 (((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴 → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
6563, 64syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
666ffnd 6723 . . . . . . . 8 (𝜑𝐹 Fn 𝐴)
6766ad2antrr 725 . . . . . . 7 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
68 elpreima 7067 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
6967, 68syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
7061, 65, 693bitr4d 311 . . . . 5 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ 𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵)))))
7170eqrdv 2726 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) = (𝐹 “ (-∞(,)(𝑦 / 𝐵))))
72 mbfima 25572 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
738, 6, 72syl2anc 583 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
7473ad2antrr 725 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
7571, 74eqeltrd 2829 . . 3 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ∈ dom vol)
76 elioomnf 13454 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7717, 76syl 17 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7821biantrurd 532 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7924biantrurd 532 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
8033breq1d 5158 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
8139breq2d 5160 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝑦 < (-𝐵 · (𝐹𝑧)) ↔ -𝑦 < -(𝐵 · (𝐹𝑧))))
8251breq1d 5158 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
83 ltdivmul 12120 . . . . . . . . . . . . . 14 ((-𝑦 ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8441, 24, 42, 45, 83syl112anc 1372 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8582, 84bitr3d 281 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8635, 16ltnegd 11823 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ -𝑦 < -(𝐵 · (𝐹𝑧))))
8781, 85, 863bitr4d 311 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
8880, 87bitr4d 282 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
89 elioopnf 13453 . . . . . . . . . . 11 ((𝑦 / 𝐵) ∈ ℝ* → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
9055, 89syl 17 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
9179, 88, 903bitr4d 311 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9277, 78, 913bitr2d 307 . . . . . . . 8 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9392anassrs 467 . . . . . . 7 ((((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9493pm5.32da 578 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
95 elpreima 7067 . . . . . . 7 (((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴 → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
9663, 95syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
97 elpreima 7067 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
9867, 97syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
9994, 96, 983bitr4d 311 . . . . 5 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ 𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞))))
10099eqrdv 2726 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) = (𝐹 “ ((𝑦 / 𝐵)(,)+∞)))
101 mbfima 25572 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
1028, 6, 101syl2anc 583 . . . . 5 (𝜑 → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
103102ad2antrr 725 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
104100, 103eqeltrd 2829 . . 3 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ∈ dom vol)
10514, 15, 75, 104ismbf2d 25582 . 2 ((𝜑𝐵 < 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
10611adantr 480 . . . 4 ((𝜑𝐵 = 0) → 𝐴 ∈ dom vol)
1076adantr 480 . . . 4 ((𝜑𝐵 = 0) → 𝐹:𝐴⟶ℝ)
108 simpr 484 . . . . 5 ((𝜑𝐵 = 0) → 𝐵 = 0)
109 0cn 11237 . . . . 5 0 ∈ ℂ
110108, 109eqeltrdi 2837 . . . 4 ((𝜑𝐵 = 0) → 𝐵 ∈ ℂ)
111 0cnd 11238 . . . 4 ((𝜑𝐵 = 0) → 0 ∈ ℂ)
112 simplr 768 . . . . . 6 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → 𝐵 = 0)
113112oveq1d 7435 . . . . 5 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (𝐵 · 𝑥) = (0 · 𝑥))
114 mul02lem2 11422 . . . . . 6 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
115114adantl 481 . . . . 5 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
116113, 115eqtrd 2768 . . . 4 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (𝐵 · 𝑥) = 0)
117106, 107, 110, 111, 116caofid2 7719 . . 3 ((𝜑𝐵 = 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) = (𝐴 × {0}))
118 mbfconst 25575 . . . 4 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
119106, 109, 118sylancl 585 . . 3 ((𝜑𝐵 = 0) → (𝐴 × {0}) ∈ MblFn)
120117, 119eqeltrd 2829 . 2 ((𝜑𝐵 = 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
12113adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
12211adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ dom vol)
123 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ)
124123rexrd 11295 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ*)
125124, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
12620ad2ant2rl 748 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
127126biantrurd 532 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
12823ad2ant2rl 748 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℝ)
129128biantrurd 532 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
130 eqidd 2729 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
13111, 3, 66, 130ofc1 7711 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
132131ad2ant2rl 748 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
133132breq2d 5160 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
1343ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ)
135 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 0 < 𝐵)
136 ltdivmul 12120 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
137123, 128, 134, 135, 136syl112anc 1372 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
138133, 137bitr4d 282 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
139134, 135elrpd 13046 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ+)
140123, 139rerpdivcld 13080 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ)
141140rexrd 11295 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ*)
142141, 89syl 17 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
143129, 138, 1423bitr4d 311 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
144125, 127, 1433bitr2d 307 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
145144anassrs 467 . . . . . . 7 ((((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
146145pm5.32da 578 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
14762ad2antrr 725 . . . . . . 7 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
148147, 64syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
14966ad2antrr 725 . . . . . . 7 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
150149, 97syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
151146, 148, 1503bitr4d 311 . . . . 5 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ 𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞))))
152151eqrdv 2726 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) = (𝐹 “ ((𝑦 / 𝐵)(,)+∞)))
153102ad2antrr 725 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
154152, 153eqeltrd 2829 . . 3 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ∈ dom vol)
155124, 76syl 17 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
156126biantrurd 532 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
157 ltmuldiv2 12119 . . . . . . . . . . 11 (((𝐹𝑧) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
158128, 123, 134, 135, 157syl112anc 1372 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
159132breq1d 5158 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
160141, 56syl 17 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
161128, 160mpbirand 706 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
162158, 159, 1613bitr4d 311 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
163155, 156, 1623bitr2d 307 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
164163anassrs 467 . . . . . . 7 ((((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
165164pm5.32da 578 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
166147, 95syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
167149, 68syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
168165, 166, 1673bitr4d 311 . . . . 5 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ 𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵)))))
169168eqrdv 2726 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) = (𝐹 “ (-∞(,)(𝑦 / 𝐵))))
17073ad2antrr 725 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
171169, 170eqeltrd 2829 . . 3 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ∈ dom vol)
172121, 122, 154, 171ismbf2d 25582 . 2 ((𝜑 ∧ 0 < 𝐵) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
173 0re 11247 . . 3 0 ∈ ℝ
174 lttri4 11329 . . 3 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
1753, 173, 174sylancl 585 . 2 (𝜑 → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
176105, 120, 172, 175mpjao3dan 1429 1 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3o 1084   = wceq 1534  wcel 2099  {csn 4629   class class class wbr 5148   × cxp 5676  ccnv 5677  dom cdm 5678  cima 5681   Fn wfn 6543  wf 6544  cfv 6548  (class class class)co 7420  f cof 7683  cc 11137  cr 11138  0cc0 11139   · cmul 11144  +∞cpnf 11276  -∞cmnf 11277  *cxr 11278   < clt 11279  -cneg 11476   / cdiv 11902  (,)cioo 13357  volcvol 25405  MblFncmbf 25556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-inf 9467  df-oi 9534  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-q 12964  df-rp 13008  df-xadd 13126  df-ioo 13361  df-ico 13363  df-icc 13364  df-fz 13518  df-fzo 13661  df-fl 13790  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-sum 15666  df-xmet 21272  df-met 21273  df-ovol 25406  df-vol 25407  df-mbf 25561
This theorem is referenced by:  mbfmulc2re  25590
  Copyright terms: Public domain W3C validator