MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2lem Structured version   Visualization version   GIF version

Theorem mbfmulc2lem 24163
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfmulc2re.1 (𝜑𝐹 ∈ MblFn)
mbfmulc2re.2 (𝜑𝐵 ∈ ℝ)
mbfmulc2lem.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
mbfmulc2lem (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)

Proof of Theorem mbfmulc2lem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 10614 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
21adantl 482 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
3 mbfmulc2re.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 fconst6g 6564 . . . . . 6 (𝐵 ∈ ℝ → (𝐴 × {𝐵}):𝐴⟶ℝ)
53, 4syl 17 . . . . 5 (𝜑 → (𝐴 × {𝐵}):𝐴⟶ℝ)
6 mbfmulc2lem.3 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
76fdmd 6519 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
8 mbfmulc2re.1 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
9 mbfdm 24142 . . . . . . 7 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
108, 9syl 17 . . . . . 6 (𝜑 → dom 𝐹 ∈ dom vol)
117, 10eqeltrrd 2918 . . . . 5 (𝜑𝐴 ∈ dom vol)
12 inidm 4198 . . . . 5 (𝐴𝐴) = 𝐴
132, 5, 6, 11, 11, 12off 7417 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
1413adantr 481 . . 3 ((𝜑𝐵 < 0) → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
1511adantr 481 . . 3 ((𝜑𝐵 < 0) → 𝐴 ∈ dom vol)
16 simprl 767 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ)
1716rexrd 10683 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ*)
18 elioopnf 12824 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
1917, 18syl 17 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
2013ffvelrnda 6846 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
2120ad2ant2rl 745 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
2221biantrurd 533 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
236ffvelrnda 6846 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
2423ad2ant2rl 745 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℝ)
2524biantrurd 533 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (𝑦 / 𝐵) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
26 simprr 769 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑧𝐴)
2711ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐴 ∈ dom vol)
283ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ)
296ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐹:𝐴⟶ℝ)
3029ffnd 6511 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐹 Fn 𝐴)
31 eqidd 2826 . . . . . . . . . . . . . 14 ((((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) ∧ 𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
3227, 28, 30, 31ofc1 7425 . . . . . . . . . . . . 13 ((((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) ∧ 𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
3326, 32mpdan 683 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
3433breq2d 5074 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
3533, 21eqeltrrd 2918 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐵 · (𝐹𝑧)) ∈ ℝ)
3616, 35ltnegd 11210 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (𝐵 · (𝐹𝑧)) ↔ -(𝐵 · (𝐹𝑧)) < -𝑦))
3728recnd 10661 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℂ)
3824recnd 10661 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℂ)
3937, 38mulneg1d 11085 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝐵 · (𝐹𝑧)) = -(𝐵 · (𝐹𝑧)))
4039breq1d 5072 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ -(𝐵 · (𝐹𝑧)) < -𝑦))
4116renegcld 11059 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → -𝑦 ∈ ℝ)
4228renegcld 11059 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → -𝐵 ∈ ℝ)
43 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 < 0)
4428lt0neg1d 11201 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐵 < 0 ↔ 0 < -𝐵))
4543, 44mpbid 233 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 0 < -𝐵)
46 ltmuldiv2 11506 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℝ ∧ -𝑦 ∈ ℝ ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ (𝐹𝑧) < (-𝑦 / -𝐵)))
4724, 41, 42, 45, 46syl112anc 1368 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ (𝐹𝑧) < (-𝑦 / -𝐵)))
4836, 40, 473bitr2rd 309 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (-𝑦 / -𝐵) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
4916recnd 10661 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℂ)
5043lt0ne0d 11197 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ≠ 0)
5149, 37, 50div2negd 11423 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝑦 / -𝐵) = (𝑦 / 𝐵))
5251breq2d 5074 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (-𝑦 / -𝐵) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
5334, 48, 523bitr2d 308 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
5416, 28, 50redivcld 11460 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ)
5554rexrd 10683 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ*)
56 elioomnf 12825 . . . . . . . . . . 11 ((𝑦 / 𝐵) ∈ ℝ* → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
5755, 56syl 17 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
5825, 53, 573bitr4d 312 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
5919, 22, 583bitr2d 308 . . . . . . . 8 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
6059anassrs 468 . . . . . . 7 ((((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
6160pm5.32da 579 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
6213ffnd 6511 . . . . . . . 8 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
6362ad2antrr 722 . . . . . . 7 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
64 elpreima 6823 . . . . . . 7 (((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴 → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
6563, 64syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
666ffnd 6511 . . . . . . . 8 (𝜑𝐹 Fn 𝐴)
6766ad2antrr 722 . . . . . . 7 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
68 elpreima 6823 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
6967, 68syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
7061, 65, 693bitr4d 312 . . . . 5 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ 𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵)))))
7170eqrdv 2823 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) = (𝐹 “ (-∞(,)(𝑦 / 𝐵))))
72 mbfima 24146 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
738, 6, 72syl2anc 584 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
7473ad2antrr 722 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
7571, 74eqeltrd 2917 . . 3 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ∈ dom vol)
76 elioomnf 12825 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7717, 76syl 17 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7821biantrurd 533 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7924biantrurd 533 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
8033breq1d 5072 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
8139breq2d 5074 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝑦 < (-𝐵 · (𝐹𝑧)) ↔ -𝑦 < -(𝐵 · (𝐹𝑧))))
8251breq1d 5072 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
83 ltdivmul 11507 . . . . . . . . . . . . . 14 ((-𝑦 ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8441, 24, 42, 45, 83syl112anc 1368 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8582, 84bitr3d 282 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8635, 16ltnegd 11210 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ -𝑦 < -(𝐵 · (𝐹𝑧))))
8781, 85, 863bitr4d 312 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
8880, 87bitr4d 283 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
89 elioopnf 12824 . . . . . . . . . . 11 ((𝑦 / 𝐵) ∈ ℝ* → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
9055, 89syl 17 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
9179, 88, 903bitr4d 312 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9277, 78, 913bitr2d 308 . . . . . . . 8 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9392anassrs 468 . . . . . . 7 ((((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9493pm5.32da 579 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
95 elpreima 6823 . . . . . . 7 (((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴 → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
9663, 95syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
97 elpreima 6823 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
9867, 97syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
9994, 96, 983bitr4d 312 . . . . 5 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ 𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞))))
10099eqrdv 2823 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) = (𝐹 “ ((𝑦 / 𝐵)(,)+∞)))
101 mbfima 24146 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
1028, 6, 101syl2anc 584 . . . . 5 (𝜑 → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
103102ad2antrr 722 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
104100, 103eqeltrd 2917 . . 3 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ∈ dom vol)
10514, 15, 75, 104ismbf2d 24156 . 2 ((𝜑𝐵 < 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
10611adantr 481 . . . 4 ((𝜑𝐵 = 0) → 𝐴 ∈ dom vol)
1076adantr 481 . . . 4 ((𝜑𝐵 = 0) → 𝐹:𝐴⟶ℝ)
108 simpr 485 . . . . 5 ((𝜑𝐵 = 0) → 𝐵 = 0)
109 0cn 10625 . . . . 5 0 ∈ ℂ
110108, 109syl6eqel 2925 . . . 4 ((𝜑𝐵 = 0) → 𝐵 ∈ ℂ)
111 0cnd 10626 . . . 4 ((𝜑𝐵 = 0) → 0 ∈ ℂ)
112 simplr 765 . . . . . 6 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → 𝐵 = 0)
113112oveq1d 7166 . . . . 5 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (𝐵 · 𝑥) = (0 · 𝑥))
114 mul02lem2 10809 . . . . . 6 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
115114adantl 482 . . . . 5 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
116113, 115eqtrd 2860 . . . 4 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (𝐵 · 𝑥) = 0)
117106, 107, 110, 111, 116caofid2 7433 . . 3 ((𝜑𝐵 = 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) = (𝐴 × {0}))
118 mbfconst 24149 . . . 4 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
119106, 109, 118sylancl 586 . . 3 ((𝜑𝐵 = 0) → (𝐴 × {0}) ∈ MblFn)
120117, 119eqeltrd 2917 . 2 ((𝜑𝐵 = 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
12113adantr 481 . . 3 ((𝜑 ∧ 0 < 𝐵) → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
12211adantr 481 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ dom vol)
123 simprl 767 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ)
124123rexrd 10683 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ*)
125124, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
12620ad2ant2rl 745 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
127126biantrurd 533 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
12823ad2ant2rl 745 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℝ)
129128biantrurd 533 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
130 eqidd 2826 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
13111, 3, 66, 130ofc1 7425 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
132131ad2ant2rl 745 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
133132breq2d 5074 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
1343ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ)
135 simplr 765 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 0 < 𝐵)
136 ltdivmul 11507 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
137123, 128, 134, 135, 136syl112anc 1368 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
138133, 137bitr4d 283 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
139134, 135elrpd 12421 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ+)
140123, 139rerpdivcld 12455 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ)
141140rexrd 10683 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ*)
142141, 89syl 17 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
143129, 138, 1423bitr4d 312 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
144125, 127, 1433bitr2d 308 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
145144anassrs 468 . . . . . . 7 ((((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
146145pm5.32da 579 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
14762ad2antrr 722 . . . . . . 7 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
148147, 64syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
14966ad2antrr 722 . . . . . . 7 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
150149, 97syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
151146, 148, 1503bitr4d 312 . . . . 5 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ 𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞))))
152151eqrdv 2823 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) = (𝐹 “ ((𝑦 / 𝐵)(,)+∞)))
153102ad2antrr 722 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
154152, 153eqeltrd 2917 . . 3 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ∈ dom vol)
155124, 76syl 17 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
156126biantrurd 533 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
157 ltmuldiv2 11506 . . . . . . . . . . 11 (((𝐹𝑧) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
158128, 123, 134, 135, 157syl112anc 1368 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
159132breq1d 5072 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
160141, 56syl 17 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
161128, 160mpbirand 703 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
162158, 159, 1613bitr4d 312 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
163155, 156, 1623bitr2d 308 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
164163anassrs 468 . . . . . . 7 ((((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
165164pm5.32da 579 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
166147, 95syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
167149, 68syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
168165, 166, 1673bitr4d 312 . . . . 5 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ 𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵)))))
169168eqrdv 2823 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) = (𝐹 “ (-∞(,)(𝑦 / 𝐵))))
17073ad2antrr 722 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
171169, 170eqeltrd 2917 . . 3 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ∈ dom vol)
172121, 122, 154, 171ismbf2d 24156 . 2 ((𝜑 ∧ 0 < 𝐵) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
173 0re 10635 . . 3 0 ∈ ℝ
174 lttri4 10717 . . 3 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
1753, 173, 174sylancl 586 . 2 (𝜑 → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
176105, 120, 172, 175mpjao3dan 1425 1 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3o 1080   = wceq 1530  wcel 2107  {csn 4563   class class class wbr 5062   × cxp 5551  ccnv 5552  dom cdm 5553  cima 5556   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151  f cof 7400  cc 10527  cr 10528  0cc0 10529   · cmul 10534  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666   < clt 10667  -cneg 10863   / cdiv 11289  (,)cioo 12731  volcvol 23979  MblFncmbf 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-xadd 12501  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-xmet 20454  df-met 20455  df-ovol 23980  df-vol 23981  df-mbf 24135
This theorem is referenced by:  mbfmulc2re  24164
  Copyright terms: Public domain W3C validator