MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2lem Structured version   Visualization version   GIF version

Theorem mbfmulc2lem 24716
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfmulc2re.1 (𝜑𝐹 ∈ MblFn)
mbfmulc2re.2 (𝜑𝐵 ∈ ℝ)
mbfmulc2lem.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
mbfmulc2lem (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)

Proof of Theorem mbfmulc2lem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 10887 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
21adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
3 mbfmulc2re.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 fconst6g 6647 . . . . . 6 (𝐵 ∈ ℝ → (𝐴 × {𝐵}):𝐴⟶ℝ)
53, 4syl 17 . . . . 5 (𝜑 → (𝐴 × {𝐵}):𝐴⟶ℝ)
6 mbfmulc2lem.3 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
76fdmd 6595 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
8 mbfmulc2re.1 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
9 mbfdm 24695 . . . . . . 7 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
108, 9syl 17 . . . . . 6 (𝜑 → dom 𝐹 ∈ dom vol)
117, 10eqeltrrd 2840 . . . . 5 (𝜑𝐴 ∈ dom vol)
12 inidm 4149 . . . . 5 (𝐴𝐴) = 𝐴
132, 5, 6, 11, 11, 12off 7529 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
1413adantr 480 . . 3 ((𝜑𝐵 < 0) → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
1511adantr 480 . . 3 ((𝜑𝐵 < 0) → 𝐴 ∈ dom vol)
16 simprl 767 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ)
1716rexrd 10956 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ*)
18 elioopnf 13104 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
1917, 18syl 17 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
2013ffvelrnda 6943 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
2120ad2ant2rl 745 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
2221biantrurd 532 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
236ffvelrnda 6943 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
2423ad2ant2rl 745 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℝ)
2524biantrurd 532 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (𝑦 / 𝐵) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
26 simprr 769 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑧𝐴)
2711ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐴 ∈ dom vol)
283ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ)
296ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐹:𝐴⟶ℝ)
3029ffnd 6585 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐹 Fn 𝐴)
31 eqidd 2739 . . . . . . . . . . . . . 14 ((((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) ∧ 𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
3227, 28, 30, 31ofc1 7537 . . . . . . . . . . . . 13 ((((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) ∧ 𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
3326, 32mpdan 683 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
3433breq2d 5082 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
3533, 21eqeltrrd 2840 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐵 · (𝐹𝑧)) ∈ ℝ)
3616, 35ltnegd 11483 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (𝐵 · (𝐹𝑧)) ↔ -(𝐵 · (𝐹𝑧)) < -𝑦))
3728recnd 10934 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℂ)
3824recnd 10934 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℂ)
3937, 38mulneg1d 11358 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝐵 · (𝐹𝑧)) = -(𝐵 · (𝐹𝑧)))
4039breq1d 5080 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ -(𝐵 · (𝐹𝑧)) < -𝑦))
4116renegcld 11332 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → -𝑦 ∈ ℝ)
4228renegcld 11332 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → -𝐵 ∈ ℝ)
43 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 < 0)
4428lt0neg1d 11474 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐵 < 0 ↔ 0 < -𝐵))
4543, 44mpbid 231 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 0 < -𝐵)
46 ltmuldiv2 11779 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℝ ∧ -𝑦 ∈ ℝ ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ (𝐹𝑧) < (-𝑦 / -𝐵)))
4724, 41, 42, 45, 46syl112anc 1372 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ (𝐹𝑧) < (-𝑦 / -𝐵)))
4836, 40, 473bitr2rd 307 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (-𝑦 / -𝐵) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
4916recnd 10934 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℂ)
5043lt0ne0d 11470 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ≠ 0)
5149, 37, 50div2negd 11696 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝑦 / -𝐵) = (𝑦 / 𝐵))
5251breq2d 5082 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (-𝑦 / -𝐵) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
5334, 48, 523bitr2d 306 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
5416, 28, 50redivcld 11733 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ)
5554rexrd 10956 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ*)
56 elioomnf 13105 . . . . . . . . . . 11 ((𝑦 / 𝐵) ∈ ℝ* → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
5755, 56syl 17 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
5825, 53, 573bitr4d 310 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
5919, 22, 583bitr2d 306 . . . . . . . 8 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
6059anassrs 467 . . . . . . 7 ((((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
6160pm5.32da 578 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
6213ffnd 6585 . . . . . . . 8 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
6362ad2antrr 722 . . . . . . 7 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
64 elpreima 6917 . . . . . . 7 (((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴 → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
6563, 64syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
666ffnd 6585 . . . . . . . 8 (𝜑𝐹 Fn 𝐴)
6766ad2antrr 722 . . . . . . 7 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
68 elpreima 6917 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
6967, 68syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
7061, 65, 693bitr4d 310 . . . . 5 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ 𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵)))))
7170eqrdv 2736 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) = (𝐹 “ (-∞(,)(𝑦 / 𝐵))))
72 mbfima 24699 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
738, 6, 72syl2anc 583 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
7473ad2antrr 722 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
7571, 74eqeltrd 2839 . . 3 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ∈ dom vol)
76 elioomnf 13105 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7717, 76syl 17 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7821biantrurd 532 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7924biantrurd 532 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
8033breq1d 5080 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
8139breq2d 5082 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝑦 < (-𝐵 · (𝐹𝑧)) ↔ -𝑦 < -(𝐵 · (𝐹𝑧))))
8251breq1d 5080 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
83 ltdivmul 11780 . . . . . . . . . . . . . 14 ((-𝑦 ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8441, 24, 42, 45, 83syl112anc 1372 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8582, 84bitr3d 280 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8635, 16ltnegd 11483 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ -𝑦 < -(𝐵 · (𝐹𝑧))))
8781, 85, 863bitr4d 310 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
8880, 87bitr4d 281 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
89 elioopnf 13104 . . . . . . . . . . 11 ((𝑦 / 𝐵) ∈ ℝ* → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
9055, 89syl 17 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
9179, 88, 903bitr4d 310 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9277, 78, 913bitr2d 306 . . . . . . . 8 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9392anassrs 467 . . . . . . 7 ((((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9493pm5.32da 578 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
95 elpreima 6917 . . . . . . 7 (((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴 → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
9663, 95syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
97 elpreima 6917 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
9867, 97syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
9994, 96, 983bitr4d 310 . . . . 5 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ 𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞))))
10099eqrdv 2736 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) = (𝐹 “ ((𝑦 / 𝐵)(,)+∞)))
101 mbfima 24699 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
1028, 6, 101syl2anc 583 . . . . 5 (𝜑 → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
103102ad2antrr 722 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
104100, 103eqeltrd 2839 . . 3 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ∈ dom vol)
10514, 15, 75, 104ismbf2d 24709 . 2 ((𝜑𝐵 < 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
10611adantr 480 . . . 4 ((𝜑𝐵 = 0) → 𝐴 ∈ dom vol)
1076adantr 480 . . . 4 ((𝜑𝐵 = 0) → 𝐹:𝐴⟶ℝ)
108 simpr 484 . . . . 5 ((𝜑𝐵 = 0) → 𝐵 = 0)
109 0cn 10898 . . . . 5 0 ∈ ℂ
110108, 109eqeltrdi 2847 . . . 4 ((𝜑𝐵 = 0) → 𝐵 ∈ ℂ)
111 0cnd 10899 . . . 4 ((𝜑𝐵 = 0) → 0 ∈ ℂ)
112 simplr 765 . . . . . 6 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → 𝐵 = 0)
113112oveq1d 7270 . . . . 5 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (𝐵 · 𝑥) = (0 · 𝑥))
114 mul02lem2 11082 . . . . . 6 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
115114adantl 481 . . . . 5 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
116113, 115eqtrd 2778 . . . 4 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (𝐵 · 𝑥) = 0)
117106, 107, 110, 111, 116caofid2 7545 . . 3 ((𝜑𝐵 = 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) = (𝐴 × {0}))
118 mbfconst 24702 . . . 4 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
119106, 109, 118sylancl 585 . . 3 ((𝜑𝐵 = 0) → (𝐴 × {0}) ∈ MblFn)
120117, 119eqeltrd 2839 . 2 ((𝜑𝐵 = 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
12113adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
12211adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ dom vol)
123 simprl 767 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ)
124123rexrd 10956 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ*)
125124, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
12620ad2ant2rl 745 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
127126biantrurd 532 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
12823ad2ant2rl 745 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℝ)
129128biantrurd 532 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
130 eqidd 2739 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
13111, 3, 66, 130ofc1 7537 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
132131ad2ant2rl 745 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
133132breq2d 5082 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
1343ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ)
135 simplr 765 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 0 < 𝐵)
136 ltdivmul 11780 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
137123, 128, 134, 135, 136syl112anc 1372 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
138133, 137bitr4d 281 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
139134, 135elrpd 12698 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ+)
140123, 139rerpdivcld 12732 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ)
141140rexrd 10956 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ*)
142141, 89syl 17 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
143129, 138, 1423bitr4d 310 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
144125, 127, 1433bitr2d 306 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
145144anassrs 467 . . . . . . 7 ((((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
146145pm5.32da 578 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
14762ad2antrr 722 . . . . . . 7 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
148147, 64syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
14966ad2antrr 722 . . . . . . 7 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
150149, 97syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
151146, 148, 1503bitr4d 310 . . . . 5 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ 𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞))))
152151eqrdv 2736 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) = (𝐹 “ ((𝑦 / 𝐵)(,)+∞)))
153102ad2antrr 722 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
154152, 153eqeltrd 2839 . . 3 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ∈ dom vol)
155124, 76syl 17 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
156126biantrurd 532 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
157 ltmuldiv2 11779 . . . . . . . . . . 11 (((𝐹𝑧) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
158128, 123, 134, 135, 157syl112anc 1372 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
159132breq1d 5080 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
160141, 56syl 17 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
161128, 160mpbirand 703 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
162158, 159, 1613bitr4d 310 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
163155, 156, 1623bitr2d 306 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
164163anassrs 467 . . . . . . 7 ((((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
165164pm5.32da 578 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
166147, 95syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
167149, 68syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
168165, 166, 1673bitr4d 310 . . . . 5 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ 𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵)))))
169168eqrdv 2736 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) = (𝐹 “ (-∞(,)(𝑦 / 𝐵))))
17073ad2antrr 722 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
171169, 170eqeltrd 2839 . . 3 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ∈ dom vol)
172121, 122, 154, 171ismbf2d 24709 . 2 ((𝜑 ∧ 0 < 𝐵) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
173 0re 10908 . . 3 0 ∈ ℝ
174 lttri4 10990 . . 3 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
1753, 173, 174sylancl 585 . 2 (𝜑 → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
176105, 120, 172, 175mpjao3dan 1429 1 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3o 1084   = wceq 1539  wcel 2108  {csn 4558   class class class wbr 5070   × cxp 5578  ccnv 5579  dom cdm 5580  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  cr 10801  0cc0 10802   · cmul 10807  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  -cneg 11136   / cdiv 11562  (,)cioo 13008  volcvol 24532  MblFncmbf 24683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688
This theorem is referenced by:  mbfmulc2re  24717
  Copyright terms: Public domain W3C validator