MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2lem Structured version   Visualization version   GIF version

Theorem mbfmulc2lem 25011
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfmulc2re.1 (𝜑𝐹 ∈ MblFn)
mbfmulc2re.2 (𝜑𝐵 ∈ ℝ)
mbfmulc2lem.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
mbfmulc2lem (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)

Proof of Theorem mbfmulc2lem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 11136 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
21adantl 482 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
3 mbfmulc2re.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 fconst6g 6731 . . . . . 6 (𝐵 ∈ ℝ → (𝐴 × {𝐵}):𝐴⟶ℝ)
53, 4syl 17 . . . . 5 (𝜑 → (𝐴 × {𝐵}):𝐴⟶ℝ)
6 mbfmulc2lem.3 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
76fdmd 6679 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
8 mbfmulc2re.1 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
9 mbfdm 24990 . . . . . . 7 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
108, 9syl 17 . . . . . 6 (𝜑 → dom 𝐹 ∈ dom vol)
117, 10eqeltrrd 2839 . . . . 5 (𝜑𝐴 ∈ dom vol)
12 inidm 4178 . . . . 5 (𝐴𝐴) = 𝐴
132, 5, 6, 11, 11, 12off 7635 . . . 4 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
1413adantr 481 . . 3 ((𝜑𝐵 < 0) → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
1511adantr 481 . . 3 ((𝜑𝐵 < 0) → 𝐴 ∈ dom vol)
16 simprl 769 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ)
1716rexrd 11205 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ*)
18 elioopnf 13360 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
1917, 18syl 17 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
2013ffvelcdmda 7035 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
2120ad2ant2rl 747 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
2221biantrurd 533 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
236ffvelcdmda 7035 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
2423ad2ant2rl 747 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℝ)
2524biantrurd 533 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (𝑦 / 𝐵) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
26 simprr 771 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑧𝐴)
2711ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐴 ∈ dom vol)
283ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ)
296ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐹:𝐴⟶ℝ)
3029ffnd 6669 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐹 Fn 𝐴)
31 eqidd 2737 . . . . . . . . . . . . . 14 ((((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) ∧ 𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
3227, 28, 30, 31ofc1 7643 . . . . . . . . . . . . 13 ((((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) ∧ 𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
3326, 32mpdan 685 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
3433breq2d 5117 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
3533, 21eqeltrrd 2839 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐵 · (𝐹𝑧)) ∈ ℝ)
3616, 35ltnegd 11733 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (𝐵 · (𝐹𝑧)) ↔ -(𝐵 · (𝐹𝑧)) < -𝑦))
3728recnd 11183 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℂ)
3824recnd 11183 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℂ)
3937, 38mulneg1d 11608 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝐵 · (𝐹𝑧)) = -(𝐵 · (𝐹𝑧)))
4039breq1d 5115 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ -(𝐵 · (𝐹𝑧)) < -𝑦))
4116renegcld 11582 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → -𝑦 ∈ ℝ)
4228renegcld 11582 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → -𝐵 ∈ ℝ)
43 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 < 0)
4428lt0neg1d 11724 . . . . . . . . . . . . . 14 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐵 < 0 ↔ 0 < -𝐵))
4543, 44mpbid 231 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 0 < -𝐵)
46 ltmuldiv2 12029 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℝ ∧ -𝑦 ∈ ℝ ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ (𝐹𝑧) < (-𝑦 / -𝐵)))
4724, 41, 42, 45, 46syl112anc 1374 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝐵 · (𝐹𝑧)) < -𝑦 ↔ (𝐹𝑧) < (-𝑦 / -𝐵)))
4836, 40, 473bitr2rd 307 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (-𝑦 / -𝐵) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
4916recnd 11183 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℂ)
5043lt0ne0d 11720 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ≠ 0)
5149, 37, 50div2negd 11946 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝑦 / -𝐵) = (𝑦 / 𝐵))
5251breq2d 5117 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) < (-𝑦 / -𝐵) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
5334, 48, 523bitr2d 306 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
5416, 28, 50redivcld 11983 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ)
5554rexrd 11205 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ*)
56 elioomnf 13361 . . . . . . . . . . 11 ((𝑦 / 𝐵) ∈ ℝ* → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
5755, 56syl 17 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
5825, 53, 573bitr4d 310 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
5919, 22, 583bitr2d 306 . . . . . . . 8 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
6059anassrs 468 . . . . . . 7 ((((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
6160pm5.32da 579 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
6213ffnd 6669 . . . . . . . 8 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
6362ad2antrr 724 . . . . . . 7 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
64 elpreima 7008 . . . . . . 7 (((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴 → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
6563, 64syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
666ffnd 6669 . . . . . . . 8 (𝜑𝐹 Fn 𝐴)
6766ad2antrr 724 . . . . . . 7 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
68 elpreima 7008 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
6967, 68syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
7061, 65, 693bitr4d 310 . . . . 5 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ 𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵)))))
7170eqrdv 2734 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) = (𝐹 “ (-∞(,)(𝑦 / 𝐵))))
72 mbfima 24994 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
738, 6, 72syl2anc 584 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
7473ad2antrr 724 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
7571, 74eqeltrd 2838 . . 3 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ∈ dom vol)
76 elioomnf 13361 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7717, 76syl 17 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7821biantrurd 533 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
7924biantrurd 533 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
8033breq1d 5115 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
8139breq2d 5117 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (-𝑦 < (-𝐵 · (𝐹𝑧)) ↔ -𝑦 < -(𝐵 · (𝐹𝑧))))
8251breq1d 5115 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
83 ltdivmul 12030 . . . . . . . . . . . . . 14 ((-𝑦 ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8441, 24, 42, 45, 83syl112anc 1374 . . . . . . . . . . . . 13 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((-𝑦 / -𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8582, 84bitr3d 280 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ -𝑦 < (-𝐵 · (𝐹𝑧))))
8635, 16ltnegd 11733 . . . . . . . . . . . 12 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ -𝑦 < -(𝐵 · (𝐹𝑧))))
8781, 85, 863bitr4d 310 . . . . . . . . . . 11 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
8880, 87bitr4d 281 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
89 elioopnf 13360 . . . . . . . . . . 11 ((𝑦 / 𝐵) ∈ ℝ* → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
9055, 89syl 17 . . . . . . . . . 10 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
9179, 88, 903bitr4d 310 . . . . . . . . 9 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9277, 78, 913bitr2d 306 . . . . . . . 8 (((𝜑𝐵 < 0) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9392anassrs 468 . . . . . . 7 ((((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
9493pm5.32da 579 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
95 elpreima 7008 . . . . . . 7 (((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴 → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
9663, 95syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
97 elpreima 7008 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
9867, 97syl 17 . . . . . 6 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
9994, 96, 983bitr4d 310 . . . . 5 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ 𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞))))
10099eqrdv 2734 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) = (𝐹 “ ((𝑦 / 𝐵)(,)+∞)))
101 mbfima 24994 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
1028, 6, 101syl2anc 584 . . . . 5 (𝜑 → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
103102ad2antrr 724 . . . 4 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
104100, 103eqeltrd 2838 . . 3 (((𝜑𝐵 < 0) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ∈ dom vol)
10514, 15, 75, 104ismbf2d 25004 . 2 ((𝜑𝐵 < 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
10611adantr 481 . . . 4 ((𝜑𝐵 = 0) → 𝐴 ∈ dom vol)
1076adantr 481 . . . 4 ((𝜑𝐵 = 0) → 𝐹:𝐴⟶ℝ)
108 simpr 485 . . . . 5 ((𝜑𝐵 = 0) → 𝐵 = 0)
109 0cn 11147 . . . . 5 0 ∈ ℂ
110108, 109eqeltrdi 2846 . . . 4 ((𝜑𝐵 = 0) → 𝐵 ∈ ℂ)
111 0cnd 11148 . . . 4 ((𝜑𝐵 = 0) → 0 ∈ ℂ)
112 simplr 767 . . . . . 6 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → 𝐵 = 0)
113112oveq1d 7372 . . . . 5 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (𝐵 · 𝑥) = (0 · 𝑥))
114 mul02lem2 11332 . . . . . 6 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
115114adantl 482 . . . . 5 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
116113, 115eqtrd 2776 . . . 4 (((𝜑𝐵 = 0) ∧ 𝑥 ∈ ℝ) → (𝐵 · 𝑥) = 0)
117106, 107, 110, 111, 116caofid2 7651 . . 3 ((𝜑𝐵 = 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) = (𝐴 × {0}))
118 mbfconst 24997 . . . 4 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
119106, 109, 118sylancl 586 . . 3 ((𝜑𝐵 = 0) → (𝐴 × {0}) ∈ MblFn)
120117, 119eqeltrd 2838 . 2 ((𝜑𝐵 = 0) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
12113adantr 481 . . 3 ((𝜑 ∧ 0 < 𝐵) → ((𝐴 × {𝐵}) ∘f · 𝐹):𝐴⟶ℝ)
12211adantr 481 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ dom vol)
123 simprl 769 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ)
124123rexrd 11205 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝑦 ∈ ℝ*)
125124, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
12620ad2ant2rl 747 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ)
127126biantrurd 533 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ 𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧))))
12823ad2ant2rl 747 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝐹𝑧) ∈ ℝ)
129128biantrurd 533 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
130 eqidd 2737 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
13111, 3, 66, 130ofc1 7643 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
132131ad2ant2rl 747 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) = (𝐵 · (𝐹𝑧)))
133132breq2d 5117 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
1343ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ)
135 simplr 767 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 0 < 𝐵)
136 ltdivmul 12030 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
137123, 128, 134, 135, 136syl112anc 1374 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝑦 / 𝐵) < (𝐹𝑧) ↔ 𝑦 < (𝐵 · (𝐹𝑧))))
138133, 137bitr4d 281 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝑦 / 𝐵) < (𝐹𝑧)))
139134, 135elrpd 12954 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → 𝐵 ∈ ℝ+)
140123, 139rerpdivcld 12988 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ)
141140rexrd 11205 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 / 𝐵) ∈ ℝ*)
142141, 89syl 17 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝑦 / 𝐵) < (𝐹𝑧))))
143129, 138, 1423bitr4d 310 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → (𝑦 < (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
144125, 127, 1433bitr2d 306 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
145144anassrs 468 . . . . . . 7 ((((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞) ↔ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞)))
146145pm5.32da 579 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
14762ad2antrr 724 . . . . . . 7 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝐴 × {𝐵}) ∘f · 𝐹) Fn 𝐴)
148147, 64syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (𝑦(,)+∞))))
14966ad2antrr 724 . . . . . . 7 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
150149, 97syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ ((𝑦 / 𝐵)(,)+∞))))
151146, 148, 1503bitr4d 310 . . . . 5 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ↔ 𝑧 ∈ (𝐹 “ ((𝑦 / 𝐵)(,)+∞))))
152151eqrdv 2734 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) = (𝐹 “ ((𝑦 / 𝐵)(,)+∞)))
153102ad2antrr 724 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 / 𝐵)(,)+∞)) ∈ dom vol)
154152, 153eqeltrd 2838 . . 3 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (𝑦(,)+∞)) ∈ dom vol)
155124, 76syl 17 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
156126biantrurd 533 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ ℝ ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦)))
157 ltmuldiv2 12029 . . . . . . . . . . 11 (((𝐹𝑧) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
158128, 123, 134, 135, 157syl112anc 1374 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐵 · (𝐹𝑧)) < 𝑦 ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
159132breq1d 5115 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐵 · (𝐹𝑧)) < 𝑦))
160141, 56syl 17 . . . . . . . . . . 11 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < (𝑦 / 𝐵))))
161128, 160mpbirand 705 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)) ↔ (𝐹𝑧) < (𝑦 / 𝐵)))
162158, 159, 1613bitr4d 310 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) < 𝑦 ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
163155, 156, 1623bitr2d 306 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐵) ∧ (𝑦 ∈ ℝ ∧ 𝑧𝐴)) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
164163anassrs 468 . . . . . . 7 ((((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵))))
165164pm5.32da 579 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
166147, 95syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (((𝐴 × {𝐵}) ∘f · 𝐹)‘𝑧) ∈ (-∞(,)𝑦))))
167149, 68syl 17 . . . . . 6 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)(𝑦 / 𝐵)))))
168165, 166, 1673bitr4d 310 . . . . 5 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ↔ 𝑧 ∈ (𝐹 “ (-∞(,)(𝑦 / 𝐵)))))
169168eqrdv 2734 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) = (𝐹 “ (-∞(,)(𝑦 / 𝐵))))
17073ad2antrr 724 . . . 4 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐹 “ (-∞(,)(𝑦 / 𝐵))) ∈ dom vol)
171169, 170eqeltrd 2838 . . 3 (((𝜑 ∧ 0 < 𝐵) ∧ 𝑦 ∈ ℝ) → (((𝐴 × {𝐵}) ∘f · 𝐹) “ (-∞(,)𝑦)) ∈ dom vol)
172121, 122, 154, 171ismbf2d 25004 . 2 ((𝜑 ∧ 0 < 𝐵) → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
173 0re 11157 . . 3 0 ∈ ℝ
174 lttri4 11239 . . 3 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
1753, 173, 174sylancl 586 . 2 (𝜑 → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
176105, 120, 172, 175mpjao3dan 1431 1 (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1086   = wceq 1541  wcel 2106  {csn 4586   class class class wbr 5105   × cxp 5631  ccnv 5632  dom cdm 5633  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  cc 11049  cr 11050  0cc0 11051   · cmul 11056  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  -cneg 11386   / cdiv 11812  (,)cioo 13264  volcvol 24827  MblFncmbf 24978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xadd 13034  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-xmet 20789  df-met 20790  df-ovol 24828  df-vol 24829  df-mbf 24983
This theorem is referenced by:  mbfmulc2re  25012
  Copyright terms: Public domain W3C validator