![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp | Structured version Visualization version GIF version |
Description: Transfer (part of) vector independence condition from domain to range of projectivity mapd. (Contributed by NM, 11-Apr-2015.) |
Ref | Expression |
---|---|
mapdindp.h | β’ π» = (LHypβπΎ) |
mapdindp.m | β’ π = ((mapdβπΎ)βπ) |
mapdindp.u | β’ π = ((DVecHβπΎ)βπ) |
mapdindp.v | β’ π = (Baseβπ) |
mapdindp.n | β’ π = (LSpanβπ) |
mapdindp.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdindp.d | β’ π· = (BaseβπΆ) |
mapdindp.j | β’ π½ = (LSpanβπΆ) |
mapdindp.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdindp.f | β’ (π β πΉ β π·) |
mapdindp.mx | β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) |
mapdindp.x | β’ (π β π β π) |
mapdindp.y | β’ (π β π β π) |
mapdindp.g | β’ (π β πΊ β π·) |
mapdindp.my | β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) |
mapdindp.z | β’ (π β π β π) |
mapdindp.e | β’ (π β πΈ β π·) |
mapdindp.mg | β’ (π β (πβ(πβ{π})) = (π½β{πΈ})) |
mapdindp.xn | β’ (π β Β¬ π β (πβ{π, π})) |
Ref | Expression |
---|---|
mapdindp | β’ (π β Β¬ πΉ β (π½β{πΊ, πΈ})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp.xn | . 2 β’ (π β Β¬ π β (πβ{π, π})) | |
2 | mapdindp.d | . . . 4 β’ π· = (BaseβπΆ) | |
3 | eqid 2737 | . . . 4 β’ (LSubSpβπΆ) = (LSubSpβπΆ) | |
4 | mapdindp.j | . . . 4 β’ π½ = (LSpanβπΆ) | |
5 | mapdindp.h | . . . . 5 β’ π» = (LHypβπΎ) | |
6 | mapdindp.c | . . . . 5 β’ πΆ = ((LCDualβπΎ)βπ) | |
7 | mapdindp.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
8 | 5, 6, 7 | lcdlmod 40084 | . . . 4 β’ (π β πΆ β LMod) |
9 | mapdindp.g | . . . . 5 β’ (π β πΊ β π·) | |
10 | mapdindp.e | . . . . 5 β’ (π β πΈ β π·) | |
11 | 2, 3, 4, 8, 9, 10 | lspprcl 20455 | . . . 4 β’ (π β (π½β{πΊ, πΈ}) β (LSubSpβπΆ)) |
12 | mapdindp.f | . . . 4 β’ (π β πΉ β π·) | |
13 | 2, 3, 4, 8, 11, 12 | lspsnel5 20472 | . . 3 β’ (π β (πΉ β (π½β{πΊ, πΈ}) β (π½β{πΉ}) β (π½β{πΊ, πΈ}))) |
14 | mapdindp.v | . . . . 5 β’ π = (Baseβπ) | |
15 | eqid 2737 | . . . . 5 β’ (LSubSpβπ) = (LSubSpβπ) | |
16 | mapdindp.n | . . . . 5 β’ π = (LSpanβπ) | |
17 | mapdindp.u | . . . . . 6 β’ π = ((DVecHβπΎ)βπ) | |
18 | 5, 17, 7 | dvhlmod 39602 | . . . . 5 β’ (π β π β LMod) |
19 | mapdindp.y | . . . . . 6 β’ (π β π β π) | |
20 | mapdindp.z | . . . . . 6 β’ (π β π β π) | |
21 | 14, 15, 16, 18, 19, 20 | lspprcl 20455 | . . . . 5 β’ (π β (πβ{π, π}) β (LSubSpβπ)) |
22 | mapdindp.x | . . . . 5 β’ (π β π β π) | |
23 | 14, 15, 16, 18, 21, 22 | lspsnel5 20472 | . . . 4 β’ (π β (π β (πβ{π, π}) β (πβ{π}) β (πβ{π, π}))) |
24 | mapdindp.m | . . . . 5 β’ π = ((mapdβπΎ)βπ) | |
25 | 14, 15, 16 | lspsncl 20454 | . . . . . 6 β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
26 | 18, 22, 25 | syl2anc 585 | . . . . 5 β’ (π β (πβ{π}) β (LSubSpβπ)) |
27 | 5, 17, 15, 24, 7, 26, 21 | mapdord 40130 | . . . 4 β’ (π β ((πβ(πβ{π})) β (πβ(πβ{π, π})) β (πβ{π}) β (πβ{π, π}))) |
28 | mapdindp.mx | . . . . 5 β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) | |
29 | eqid 2737 | . . . . . . . . 9 β’ (LSSumβπ) = (LSSumβπ) | |
30 | 14, 16, 29, 18, 19, 20 | lsmpr 20566 | . . . . . . . 8 β’ (π β (πβ{π, π}) = ((πβ{π})(LSSumβπ)(πβ{π}))) |
31 | 30 | fveq2d 6851 | . . . . . . 7 β’ (π β (πβ(πβ{π, π})) = (πβ((πβ{π})(LSSumβπ)(πβ{π})))) |
32 | eqid 2737 | . . . . . . . 8 β’ (LSSumβπΆ) = (LSSumβπΆ) | |
33 | 14, 15, 16 | lspsncl 20454 | . . . . . . . . 9 β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
34 | 18, 19, 33 | syl2anc 585 | . . . . . . . 8 β’ (π β (πβ{π}) β (LSubSpβπ)) |
35 | 14, 15, 16 | lspsncl 20454 | . . . . . . . . 9 β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
36 | 18, 20, 35 | syl2anc 585 | . . . . . . . 8 β’ (π β (πβ{π}) β (LSubSpβπ)) |
37 | 5, 24, 17, 15, 29, 6, 32, 7, 34, 36 | mapdlsm 40156 | . . . . . . 7 β’ (π β (πβ((πβ{π})(LSSumβπ)(πβ{π}))) = ((πβ(πβ{π}))(LSSumβπΆ)(πβ(πβ{π})))) |
38 | mapdindp.my | . . . . . . . 8 β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) | |
39 | mapdindp.mg | . . . . . . . 8 β’ (π β (πβ(πβ{π})) = (π½β{πΈ})) | |
40 | 38, 39 | oveq12d 7380 | . . . . . . 7 β’ (π β ((πβ(πβ{π}))(LSSumβπΆ)(πβ(πβ{π}))) = ((π½β{πΊ})(LSSumβπΆ)(π½β{πΈ}))) |
41 | 31, 37, 40 | 3eqtrd 2781 | . . . . . 6 β’ (π β (πβ(πβ{π, π})) = ((π½β{πΊ})(LSSumβπΆ)(π½β{πΈ}))) |
42 | 2, 4, 32, 8, 9, 10 | lsmpr 20566 | . . . . . 6 β’ (π β (π½β{πΊ, πΈ}) = ((π½β{πΊ})(LSSumβπΆ)(π½β{πΈ}))) |
43 | 41, 42 | eqtr4d 2780 | . . . . 5 β’ (π β (πβ(πβ{π, π})) = (π½β{πΊ, πΈ})) |
44 | 28, 43 | sseq12d 3982 | . . . 4 β’ (π β ((πβ(πβ{π})) β (πβ(πβ{π, π})) β (π½β{πΉ}) β (π½β{πΊ, πΈ}))) |
45 | 23, 27, 44 | 3bitr2rd 308 | . . 3 β’ (π β ((π½β{πΉ}) β (π½β{πΊ, πΈ}) β π β (πβ{π, π}))) |
46 | 13, 45 | bitrd 279 | . 2 β’ (π β (πΉ β (π½β{πΊ, πΈ}) β π β (πβ{π, π}))) |
47 | 1, 46 | mtbird 325 | 1 β’ (π β Β¬ πΉ β (π½β{πΊ, πΈ})) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wss 3915 {csn 4591 {cpr 4593 βcfv 6501 (class class class)co 7362 Basecbs 17090 LSSumclsm 19423 LModclmod 20338 LSubSpclss 20408 LSpanclspn 20448 HLchlt 37841 LHypclh 38476 DVecHcdvh 39570 LCDualclcd 40078 mapdcmpd 40116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-riotaBAD 37444 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-of 7622 df-om 7808 df-1st 7926 df-2nd 7927 df-tpos 8162 df-undef 8209 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-map 8774 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-n0 12421 df-z 12507 df-uz 12771 df-fz 13432 df-struct 17026 df-sets 17043 df-slot 17061 df-ndx 17073 df-base 17091 df-ress 17120 df-plusg 17153 df-mulr 17154 df-sca 17156 df-vsca 17157 df-0g 17330 df-mre 17473 df-mrc 17474 df-acs 17476 df-proset 18191 df-poset 18209 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18328 df-clat 18395 df-mgm 18504 df-sgrp 18553 df-mnd 18564 df-submnd 18609 df-grp 18758 df-minusg 18759 df-sbg 18760 df-subg 18932 df-cntz 19104 df-oppg 19131 df-lsm 19425 df-cmn 19571 df-abl 19572 df-mgp 19904 df-ur 19921 df-ring 19973 df-oppr 20056 df-dvdsr 20077 df-unit 20078 df-invr 20108 df-dvr 20119 df-drng 20201 df-lmod 20340 df-lss 20409 df-lsp 20449 df-lvec 20580 df-lsatoms 37467 df-lshyp 37468 df-lcv 37510 df-lfl 37549 df-lkr 37577 df-ldual 37615 df-oposet 37667 df-ol 37669 df-oml 37670 df-covers 37757 df-ats 37758 df-atl 37789 df-cvlat 37813 df-hlat 37842 df-llines 37990 df-lplanes 37991 df-lvols 37992 df-lines 37993 df-psubsp 37995 df-pmap 37996 df-padd 38288 df-lhyp 38480 df-laut 38481 df-ldil 38596 df-ltrn 38597 df-trl 38651 df-tgrp 39235 df-tendo 39247 df-edring 39249 df-dveca 39495 df-disoa 39521 df-dvech 39571 df-dib 39631 df-dic 39665 df-dih 39721 df-doch 39840 df-djh 39887 df-lcdual 40079 df-mapd 40117 |
This theorem is referenced by: mapdheq4lem 40223 mapdh6lem1N 40225 mapdh6lem2N 40226 hdmap1l6lem1 40299 hdmap1l6lem2 40300 |
Copyright terms: Public domain | W3C validator |