| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp | Structured version Visualization version GIF version | ||
| Description: Transfer (part of) vector independence condition from domain to range of projectivity mapd. (Contributed by NM, 11-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdindp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdindp.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdindp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdindp.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdindp.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdindp.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdindp.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdindp.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdindp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdindp.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdindp.mx | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdindp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mapdindp.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| mapdindp.g | ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
| mapdindp.my | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) |
| mapdindp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| mapdindp.e | ⊢ (𝜑 → 𝐸 ∈ 𝐷) |
| mapdindp.mg | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸})) |
| mapdindp.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| Ref | Expression |
|---|---|
| mapdindp | ⊢ (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdindp.xn | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 2 | mapdindp.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
| 3 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 4 | mapdindp.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 5 | mapdindp.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | mapdindp.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 7 | mapdindp.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 8 | 5, 6, 7 | lcdlmod 41574 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 9 | mapdindp.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐷) | |
| 10 | mapdindp.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐷) | |
| 11 | 2, 3, 4, 8, 9, 10 | lspprcl 20899 | . . . 4 ⊢ (𝜑 → (𝐽‘{𝐺, 𝐸}) ∈ (LSubSp‘𝐶)) |
| 12 | mapdindp.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 13 | 2, 3, 4, 8, 11, 12 | ellspsn5b 20916 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐽‘{𝐺, 𝐸}) ↔ (𝐽‘{𝐹}) ⊆ (𝐽‘{𝐺, 𝐸}))) |
| 14 | mapdindp.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 15 | eqid 2729 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 16 | mapdindp.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 17 | mapdindp.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 18 | 5, 17, 7 | dvhlmod 41092 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 19 | mapdindp.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 20 | mapdindp.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 21 | 14, 15, 16, 18, 19, 20 | lspprcl 20899 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈)) |
| 22 | mapdindp.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 23 | 14, 15, 16, 18, 21, 22 | ellspsn5b 20916 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 24 | mapdindp.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 25 | 14, 15, 16 | lspsncl 20898 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 26 | 18, 22, 25 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 27 | 5, 17, 15, 24, 7, 26, 21 | mapdord 41620 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑋})) ⊆ (𝑀‘(𝑁‘{𝑌, 𝑍})) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 28 | mapdindp.mx | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 29 | eqid 2729 | . . . . . . . . 9 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
| 30 | 14, 16, 29, 18, 19, 20 | lsmpr 21011 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) |
| 31 | 30 | fveq2d 6830 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌, 𝑍})) = (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))) |
| 32 | eqid 2729 | . . . . . . . 8 ⊢ (LSSum‘𝐶) = (LSSum‘𝐶) | |
| 33 | 14, 15, 16 | lspsncl 20898 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 34 | 18, 19, 33 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 35 | 14, 15, 16 | lspsncl 20898 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑍 ∈ 𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) |
| 36 | 18, 20, 35 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) |
| 37 | 5, 24, 17, 15, 29, 6, 32, 7, 34, 36 | mapdlsm 41646 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍})))) |
| 38 | mapdindp.my | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) | |
| 39 | mapdindp.mg | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸})) | |
| 40 | 38, 39 | oveq12d 7371 | . . . . . . 7 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸}))) |
| 41 | 31, 37, 40 | 3eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌, 𝑍})) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸}))) |
| 42 | 2, 4, 32, 8, 9, 10 | lsmpr 21011 | . . . . . 6 ⊢ (𝜑 → (𝐽‘{𝐺, 𝐸}) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸}))) |
| 43 | 41, 42 | eqtr4d 2767 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌, 𝑍})) = (𝐽‘{𝐺, 𝐸})) |
| 44 | 28, 43 | sseq12d 3971 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑋})) ⊆ (𝑀‘(𝑁‘{𝑌, 𝑍})) ↔ (𝐽‘{𝐹}) ⊆ (𝐽‘{𝐺, 𝐸}))) |
| 45 | 23, 27, 44 | 3bitr2rd 308 | . . 3 ⊢ (𝜑 → ((𝐽‘{𝐹}) ⊆ (𝐽‘{𝐺, 𝐸}) ↔ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))) |
| 46 | 13, 45 | bitrd 279 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐽‘{𝐺, 𝐸}) ↔ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))) |
| 47 | 1, 46 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 {cpr 4581 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 LSSumclsm 19531 LModclmod 20781 LSubSpclss 20852 LSpanclspn 20892 HLchlt 39331 LHypclh 39966 DVecHcdvh 41060 LCDualclcd 41568 mapdcmpd 41606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-0g 17363 df-mre 17506 df-mrc 17507 df-acs 17509 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-oppg 19243 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-nzr 20416 df-rlreg 20597 df-domn 20598 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 df-lsatoms 38957 df-lshyp 38958 df-lcv 39000 df-lfl 39039 df-lkr 39067 df-ldual 39105 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-llines 39480 df-lplanes 39481 df-lvols 39482 df-lines 39483 df-psubsp 39485 df-pmap 39486 df-padd 39778 df-lhyp 39970 df-laut 39971 df-ldil 40086 df-ltrn 40087 df-trl 40141 df-tgrp 40725 df-tendo 40737 df-edring 40739 df-dveca 40985 df-disoa 41011 df-dvech 41061 df-dib 41121 df-dic 41155 df-dih 41211 df-doch 41330 df-djh 41377 df-lcdual 41569 df-mapd 41607 |
| This theorem is referenced by: mapdheq4lem 41713 mapdh6lem1N 41715 mapdh6lem2N 41716 hdmap1l6lem1 41789 hdmap1l6lem2 41790 |
| Copyright terms: Public domain | W3C validator |