Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp | Structured version Visualization version GIF version |
Description: Transfer (part of) vector independence condition from domain to range of projectivity mapd. (Contributed by NM, 11-Apr-2015.) |
Ref | Expression |
---|---|
mapdindp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdindp.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdindp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdindp.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdindp.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdindp.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdindp.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdindp.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdindp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdindp.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdindp.mx | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdindp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdindp.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdindp.g | ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
mapdindp.my | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) |
mapdindp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
mapdindp.e | ⊢ (𝜑 → 𝐸 ∈ 𝐷) |
mapdindp.mg | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸})) |
mapdindp.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
Ref | Expression |
---|---|
mapdindp | ⊢ (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp.xn | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
2 | mapdindp.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
3 | eqid 2759 | . . . 4 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
4 | mapdindp.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
5 | mapdindp.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | mapdindp.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
7 | mapdindp.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 5, 6, 7 | lcdlmod 39204 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
9 | mapdindp.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐷) | |
10 | mapdindp.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐷) | |
11 | 2, 3, 4, 8, 9, 10 | lspprcl 19833 | . . . 4 ⊢ (𝜑 → (𝐽‘{𝐺, 𝐸}) ∈ (LSubSp‘𝐶)) |
12 | mapdindp.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
13 | 2, 3, 4, 8, 11, 12 | lspsnel5 19850 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐽‘{𝐺, 𝐸}) ↔ (𝐽‘{𝐹}) ⊆ (𝐽‘{𝐺, 𝐸}))) |
14 | mapdindp.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
15 | eqid 2759 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
16 | mapdindp.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
17 | mapdindp.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
18 | 5, 17, 7 | dvhlmod 38722 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
19 | mapdindp.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
20 | mapdindp.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
21 | 14, 15, 16, 18, 19, 20 | lspprcl 19833 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈)) |
22 | mapdindp.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
23 | 14, 15, 16, 18, 21, 22 | lspsnel5 19850 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
24 | mapdindp.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
25 | 14, 15, 16 | lspsncl 19832 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
26 | 18, 22, 25 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
27 | 5, 17, 15, 24, 7, 26, 21 | mapdord 39250 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑋})) ⊆ (𝑀‘(𝑁‘{𝑌, 𝑍})) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
28 | mapdindp.mx | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
29 | eqid 2759 | . . . . . . . . 9 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
30 | 14, 16, 29, 18, 19, 20 | lsmpr 19944 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) |
31 | 30 | fveq2d 6668 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌, 𝑍})) = (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))) |
32 | eqid 2759 | . . . . . . . 8 ⊢ (LSSum‘𝐶) = (LSSum‘𝐶) | |
33 | 14, 15, 16 | lspsncl 19832 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
34 | 18, 19, 33 | syl2anc 587 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
35 | 14, 15, 16 | lspsncl 19832 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑍 ∈ 𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) |
36 | 18, 20, 35 | syl2anc 587 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) |
37 | 5, 24, 17, 15, 29, 6, 32, 7, 34, 36 | mapdlsm 39276 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍})))) |
38 | mapdindp.my | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) | |
39 | mapdindp.mg | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸})) | |
40 | 38, 39 | oveq12d 7175 | . . . . . . 7 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸}))) |
41 | 31, 37, 40 | 3eqtrd 2798 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌, 𝑍})) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸}))) |
42 | 2, 4, 32, 8, 9, 10 | lsmpr 19944 | . . . . . 6 ⊢ (𝜑 → (𝐽‘{𝐺, 𝐸}) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸}))) |
43 | 41, 42 | eqtr4d 2797 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌, 𝑍})) = (𝐽‘{𝐺, 𝐸})) |
44 | 28, 43 | sseq12d 3928 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑋})) ⊆ (𝑀‘(𝑁‘{𝑌, 𝑍})) ↔ (𝐽‘{𝐹}) ⊆ (𝐽‘{𝐺, 𝐸}))) |
45 | 23, 27, 44 | 3bitr2rd 311 | . . 3 ⊢ (𝜑 → ((𝐽‘{𝐹}) ⊆ (𝐽‘{𝐺, 𝐸}) ↔ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))) |
46 | 13, 45 | bitrd 282 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐽‘{𝐺, 𝐸}) ↔ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))) |
47 | 1, 46 | mtbird 328 | 1 ⊢ (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ⊆ wss 3861 {csn 4526 {cpr 4528 ‘cfv 6341 (class class class)co 7157 Basecbs 16556 LSSumclsm 18841 LModclmod 19717 LSubSpclss 19786 LSpanclspn 19826 HLchlt 36962 LHypclh 37596 DVecHcdvh 38690 LCDualclcd 39198 mapdcmpd 39236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-riotaBAD 36565 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-om 7587 df-1st 7700 df-2nd 7701 df-tpos 7909 df-undef 7956 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-map 8425 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-n0 11949 df-z 12035 df-uz 12297 df-fz 12954 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-sca 16654 df-vsca 16655 df-0g 16788 df-mre 16930 df-mrc 16931 df-acs 16933 df-proset 17619 df-poset 17637 df-plt 17649 df-lub 17665 df-glb 17666 df-join 17667 df-meet 17668 df-p0 17730 df-p1 17731 df-lat 17737 df-clat 17799 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-submnd 18038 df-grp 18187 df-minusg 18188 df-sbg 18189 df-subg 18358 df-cntz 18529 df-oppg 18556 df-lsm 18843 df-cmn 18990 df-abl 18991 df-mgp 19323 df-ur 19335 df-ring 19382 df-oppr 19459 df-dvdsr 19477 df-unit 19478 df-invr 19508 df-dvr 19519 df-drng 19587 df-lmod 19719 df-lss 19787 df-lsp 19827 df-lvec 19958 df-lsatoms 36588 df-lshyp 36589 df-lcv 36631 df-lfl 36670 df-lkr 36698 df-ldual 36736 df-oposet 36788 df-ol 36790 df-oml 36791 df-covers 36878 df-ats 36879 df-atl 36910 df-cvlat 36934 df-hlat 36963 df-llines 37110 df-lplanes 37111 df-lvols 37112 df-lines 37113 df-psubsp 37115 df-pmap 37116 df-padd 37408 df-lhyp 37600 df-laut 37601 df-ldil 37716 df-ltrn 37717 df-trl 37771 df-tgrp 38355 df-tendo 38367 df-edring 38369 df-dveca 38615 df-disoa 38641 df-dvech 38691 df-dib 38751 df-dic 38785 df-dih 38841 df-doch 38960 df-djh 39007 df-lcdual 39199 df-mapd 39237 |
This theorem is referenced by: mapdheq4lem 39343 mapdh6lem1N 39345 mapdh6lem2N 39346 hdmap1l6lem1 39419 hdmap1l6lem2 39420 |
Copyright terms: Public domain | W3C validator |