MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulle0b Structured version   Visualization version   GIF version

Theorem mulle0b 11990
Description: A condition for multiplication to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulle0b ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0))))

Proof of Theorem mulle0b
StepHypRef Expression
1 remulcl 11088 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21le0neg1d 11685 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ 0 ≤ -(𝐴 · 𝐵)))
3 le0neg2 11623 . . . . . 6 (𝐵 ∈ ℝ → (0 ≤ 𝐵 ↔ -𝐵 ≤ 0))
43anbi2d 630 . . . . 5 (𝐵 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ↔ (𝐴 ≤ 0 ∧ -𝐵 ≤ 0)))
5 le0neg1 11622 . . . . . 6 (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
65anbi2d 630 . . . . 5 (𝐵 ∈ ℝ → ((0 ≤ 𝐴𝐵 ≤ 0) ↔ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵)))
74, 6orbi12d 918 . . . 4 (𝐵 ∈ ℝ → (((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0)) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
87adantl 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0)) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
9 renegcl 11421 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
10 mulge0b 11989 . . . 4 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
119, 10sylan2 593 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
12 recn 11093 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
13 recn 11093 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
14 mulneg2 11551 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
1514breq2d 5103 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 ≤ (𝐴 · -𝐵) ↔ 0 ≤ -(𝐴 · 𝐵)))
1612, 13, 15syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ 0 ≤ -(𝐴 · 𝐵)))
178, 11, 163bitr2rd 308 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ -(𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0))))
182, 17bitrd 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wcel 2111   class class class wbr 5091  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003   · cmul 11008  cle 11144  -cneg 11342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772
This theorem is referenced by:  mulsuble0b  11991  addmodlteq  13850  colinearalglem4  28885  reclt0d  45424
  Copyright terms: Public domain W3C validator