MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulle0b Structured version   Visualization version   GIF version

Theorem mulle0b 12137
Description: A condition for multiplication to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulle0b ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0))))

Proof of Theorem mulle0b
StepHypRef Expression
1 remulcl 11238 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21le0neg1d 11832 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ 0 ≤ -(𝐴 · 𝐵)))
3 le0neg2 11770 . . . . . 6 (𝐵 ∈ ℝ → (0 ≤ 𝐵 ↔ -𝐵 ≤ 0))
43anbi2d 630 . . . . 5 (𝐵 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ↔ (𝐴 ≤ 0 ∧ -𝐵 ≤ 0)))
5 le0neg1 11769 . . . . . 6 (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
65anbi2d 630 . . . . 5 (𝐵 ∈ ℝ → ((0 ≤ 𝐴𝐵 ≤ 0) ↔ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵)))
74, 6orbi12d 918 . . . 4 (𝐵 ∈ ℝ → (((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0)) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
87adantl 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0)) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
9 renegcl 11570 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
10 mulge0b 12136 . . . 4 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
119, 10sylan2 593 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
12 recn 11243 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
13 recn 11243 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
14 mulneg2 11698 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
1514breq2d 5160 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 ≤ (𝐴 · -𝐵) ↔ 0 ≤ -(𝐴 · 𝐵)))
1612, 13, 15syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ 0 ≤ -(𝐴 · 𝐵)))
178, 11, 163bitr2rd 308 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ -(𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0))))
182, 17bitrd 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wcel 2106   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   · cmul 11158  cle 11294  -cneg 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919
This theorem is referenced by:  mulsuble0b  12138  addmodlteq  13984  colinearalglem4  28939  reclt0d  45337
  Copyright terms: Public domain W3C validator