| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulle0b | Structured version Visualization version GIF version | ||
| Description: A condition for multiplication to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.) |
| Ref | Expression |
|---|---|
| mulle0b | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴 ∧ 𝐵 ≤ 0)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl 11240 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 2 | 1 | le0neg1d 11834 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ 0 ≤ -(𝐴 · 𝐵))) |
| 3 | le0neg2 11772 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (0 ≤ 𝐵 ↔ -𝐵 ≤ 0)) | |
| 4 | 3 | anbi2d 630 | . . . . 5 ⊢ (𝐵 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ↔ (𝐴 ≤ 0 ∧ -𝐵 ≤ 0))) |
| 5 | le0neg1 11771 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵)) | |
| 6 | 5 | anbi2d 630 | . . . . 5 ⊢ (𝐵 ∈ ℝ → ((0 ≤ 𝐴 ∧ 𝐵 ≤ 0) ↔ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))) |
| 7 | 4, 6 | orbi12d 919 | . . . 4 ⊢ (𝐵 ∈ ℝ → (((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴 ∧ 𝐵 ≤ 0)) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵)))) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴 ∧ 𝐵 ≤ 0)) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵)))) |
| 9 | renegcl 11572 | . . . 4 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
| 10 | mulge0b 12138 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵)))) | |
| 11 | 9, 10 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵)))) |
| 12 | recn 11245 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 13 | recn 11245 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 14 | mulneg2 11700 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) | |
| 15 | 14 | breq2d 5155 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 ≤ (𝐴 · -𝐵) ↔ 0 ≤ -(𝐴 · 𝐵))) |
| 16 | 12, 13, 15 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ 0 ≤ -(𝐴 · 𝐵))) |
| 17 | 8, 11, 16 | 3bitr2rd 308 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ -(𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴 ∧ 𝐵 ≤ 0)))) |
| 18 | 2, 17 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴 ∧ 𝐵 ≤ 0)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 · cmul 11160 ≤ cle 11296 -cneg 11493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 |
| This theorem is referenced by: mulsuble0b 12140 addmodlteq 13987 colinearalglem4 28924 reclt0d 45398 |
| Copyright terms: Public domain | W3C validator |