![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhchr | Structured version Visualization version GIF version |
Description: The kernel of the homomorphism from the integers to a ring is injective if and only if the ring has characteristic 0 . (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
zrhker.0 | ⊢ 𝐵 = (Base‘𝑅) |
zrhker.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
zrhker.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
zrhchr | ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ 𝐿:ℤ–1-1→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhker.1 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
2 | eqid 2797 | . . . 4 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
3 | eqid 2797 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 1, 2, 3 | zrhval2 20175 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐿 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
5 | f1eq1 6309 | . . 3 ⊢ (𝐿 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) → (𝐿:ℤ–1-1→𝐵 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))):ℤ–1-1→𝐵)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → (𝐿:ℤ–1-1→𝐵 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))):ℤ–1-1→𝐵)) |
7 | ringgrp 18864 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
8 | zrhker.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
9 | 8, 3 | ringidcl 18880 | . . 3 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
10 | eqid 2797 | . . . 4 ⊢ (od‘𝑅) = (od‘𝑅) | |
11 | eqid 2797 | . . . 4 ⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) | |
12 | 8, 10, 2, 11 | odf1 18288 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵) → (((od‘𝑅)‘(1r‘𝑅)) = 0 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))):ℤ–1-1→𝐵)) |
13 | 7, 9, 12 | syl2anc 580 | . 2 ⊢ (𝑅 ∈ Ring → (((od‘𝑅)‘(1r‘𝑅)) = 0 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))):ℤ–1-1→𝐵)) |
14 | eqid 2797 | . . . . 5 ⊢ (chr‘𝑅) = (chr‘𝑅) | |
15 | 10, 3, 14 | chrval 20191 | . . . 4 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = (chr‘𝑅) |
16 | 15 | eqeq1i 2802 | . . 3 ⊢ (((od‘𝑅)‘(1r‘𝑅)) = 0 ↔ (chr‘𝑅) = 0) |
17 | 16 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → (((od‘𝑅)‘(1r‘𝑅)) = 0 ↔ (chr‘𝑅) = 0)) |
18 | 6, 13, 17 | 3bitr2rd 300 | 1 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ 𝐿:ℤ–1-1→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ↦ cmpt 4920 –1-1→wf1 6096 ‘cfv 6099 (class class class)co 6876 0cc0 10222 ℤcz 11662 Basecbs 16180 0gc0g 16411 Grpcgrp 17734 .gcmg 17852 odcod 18253 1rcur 18813 Ringcrg 18859 ℤRHomczrh 20166 chrcchr 20168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 ax-addf 10301 ax-mulf 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-sup 8588 df-inf 8589 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-rp 12071 df-fz 12577 df-fl 12844 df-mod 12920 df-seq 13052 df-exp 13111 df-cj 14176 df-re 14177 df-im 14178 df-sqrt 14312 df-abs 14313 df-dvds 15316 df-struct 16182 df-ndx 16183 df-slot 16184 df-base 16186 df-sets 16187 df-ress 16188 df-plusg 16276 df-mulr 16277 df-starv 16278 df-tset 16282 df-ple 16283 df-ds 16285 df-unif 16286 df-0g 16413 df-mgm 17553 df-sgrp 17595 df-mnd 17606 df-mhm 17646 df-grp 17737 df-minusg 17738 df-sbg 17739 df-mulg 17853 df-subg 17900 df-ghm 17967 df-od 18257 df-cmn 18506 df-mgp 18802 df-ur 18814 df-ring 18861 df-cring 18862 df-rnghom 19029 df-subrg 19092 df-cnfld 20065 df-zring 20137 df-zrh 20170 df-chr 20172 |
This theorem is referenced by: zrhker 30528 qqhre 30571 |
Copyright terms: Public domain | W3C validator |