![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhchr | Structured version Visualization version GIF version |
Description: The kernel of the homomorphism from the integers to a ring is injective if and only if the ring has characteristic 0 . (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
zrhker.0 | ⊢ 𝐵 = (Base‘𝑅) |
zrhker.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
zrhker.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
zrhchr | ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ 𝐿:ℤ–1-1→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhker.1 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
2 | eqid 2724 | . . . 4 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
3 | eqid 2724 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 1, 2, 3 | zrhval2 21363 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐿 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅)))) |
5 | f1eq1 6772 | . . 3 ⊢ (𝐿 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) → (𝐿:ℤ–1-1→𝐵 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))):ℤ–1-1→𝐵)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → (𝐿:ℤ–1-1→𝐵 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))):ℤ–1-1→𝐵)) |
7 | ringgrp 20133 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
8 | zrhker.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
9 | 8, 3 | ringidcl 20155 | . . 3 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
10 | eqid 2724 | . . . 4 ⊢ (od‘𝑅) = (od‘𝑅) | |
11 | eqid 2724 | . . . 4 ⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))) | |
12 | 8, 10, 2, 11 | odf1 19472 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵) → (((od‘𝑅)‘(1r‘𝑅)) = 0 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))):ℤ–1-1→𝐵)) |
13 | 7, 9, 12 | syl2anc 583 | . 2 ⊢ (𝑅 ∈ Ring → (((od‘𝑅)‘(1r‘𝑅)) = 0 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝑅)(1r‘𝑅))):ℤ–1-1→𝐵)) |
14 | eqid 2724 | . . . . 5 ⊢ (chr‘𝑅) = (chr‘𝑅) | |
15 | 10, 3, 14 | chrval 21382 | . . . 4 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = (chr‘𝑅) |
16 | 15 | eqeq1i 2729 | . . 3 ⊢ (((od‘𝑅)‘(1r‘𝑅)) = 0 ↔ (chr‘𝑅) = 0) |
17 | 16 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → (((od‘𝑅)‘(1r‘𝑅)) = 0 ↔ (chr‘𝑅) = 0)) |
18 | 6, 13, 17 | 3bitr2rd 308 | 1 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ 𝐿:ℤ–1-1→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5221 –1-1→wf1 6530 ‘cfv 6533 (class class class)co 7401 0cc0 11106 ℤcz 12555 Basecbs 17143 0gc0g 17384 Grpcgrp 18853 .gcmg 18985 odcod 19434 1rcur 20076 Ringcrg 20128 ℤRHomczrh 21354 chrcchr 21356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-rp 12972 df-fz 13482 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-dvds 16195 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-mhm 18703 df-grp 18856 df-minusg 18857 df-sbg 18858 df-mulg 18986 df-subg 19040 df-ghm 19129 df-od 19438 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-rhm 20364 df-subrng 20436 df-subrg 20461 df-cnfld 21229 df-zring 21302 df-zrh 21358 df-chr 21360 |
This theorem is referenced by: zrhker 33446 qqhre 33489 |
Copyright terms: Public domain | W3C validator |