MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem7 Structured version   Visualization version   GIF version

Theorem bposlem7 25874
Description: Lemma for bpos 25877. The function 𝐹 is decreasing. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bposlem7.1 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
bposlem7.2 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
bposlem7.3 (𝜑𝐴 ∈ ℕ)
bposlem7.4 (𝜑𝐵 ∈ ℕ)
bposlem7.5 (𝜑 → (e↑2) ≤ 𝐴)
bposlem7.6 (𝜑 → (e↑2) ≤ 𝐵)
Assertion
Ref Expression
bposlem7 (𝜑 → (𝐴 < 𝐵 → (𝐹𝐵) < (𝐹𝐴)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥)

Proof of Theorem bposlem7
StepHypRef Expression
1 bposlem7.4 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℕ)
21nnrpd 12417 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
32rpsqrtcld 14763 . . . . . . . . . . 11 (𝜑 → (√‘𝐵) ∈ ℝ+)
4 fveq2 6645 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐵) → (log‘𝑥) = (log‘(√‘𝐵)))
5 id 22 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐵) → 𝑥 = (√‘𝐵))
64, 5oveq12d 7153 . . . . . . . . . . . 12 (𝑥 = (√‘𝐵) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝐵)) / (√‘𝐵)))
7 bposlem7.2 . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
8 ovex 7168 . . . . . . . . . . . 12 ((log‘(√‘𝐵)) / (√‘𝐵)) ∈ V
96, 7, 8fvmpt 6745 . . . . . . . . . . 11 ((√‘𝐵) ∈ ℝ+ → (𝐺‘(√‘𝐵)) = ((log‘(√‘𝐵)) / (√‘𝐵)))
103, 9syl 17 . . . . . . . . . 10 (𝜑 → (𝐺‘(√‘𝐵)) = ((log‘(√‘𝐵)) / (√‘𝐵)))
11 bposlem7.3 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℕ)
1211nnrpd 12417 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
1312rpsqrtcld 14763 . . . . . . . . . . 11 (𝜑 → (√‘𝐴) ∈ ℝ+)
14 fveq2 6645 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐴) → (log‘𝑥) = (log‘(√‘𝐴)))
15 id 22 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐴) → 𝑥 = (√‘𝐴))
1614, 15oveq12d 7153 . . . . . . . . . . . 12 (𝑥 = (√‘𝐴) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝐴)) / (√‘𝐴)))
17 ovex 7168 . . . . . . . . . . . 12 ((log‘(√‘𝐴)) / (√‘𝐴)) ∈ V
1816, 7, 17fvmpt 6745 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℝ+ → (𝐺‘(√‘𝐴)) = ((log‘(√‘𝐴)) / (√‘𝐴)))
1913, 18syl 17 . . . . . . . . . 10 (𝜑 → (𝐺‘(√‘𝐴)) = ((log‘(√‘𝐴)) / (√‘𝐴)))
2010, 19breq12d 5043 . . . . . . . . 9 (𝜑 → ((𝐺‘(√‘𝐵)) < (𝐺‘(√‘𝐴)) ↔ ((log‘(√‘𝐵)) / (√‘𝐵)) < ((log‘(√‘𝐴)) / (√‘𝐴))))
2113rpred 12419 . . . . . . . . . 10 (𝜑 → (√‘𝐴) ∈ ℝ)
22 bposlem7.5 . . . . . . . . . . . 12 (𝜑 → (e↑2) ≤ 𝐴)
2312rprege0d 12426 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
24 resqrtth 14607 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑 → ((√‘𝐴)↑2) = 𝐴)
2622, 25breqtrrd 5058 . . . . . . . . . . 11 (𝜑 → (e↑2) ≤ ((√‘𝐴)↑2))
2713rpge0d 12423 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (√‘𝐴))
28 ere 15434 . . . . . . . . . . . . 13 e ∈ ℝ
29 0re 10632 . . . . . . . . . . . . . 14 0 ∈ ℝ
30 epos 15552 . . . . . . . . . . . . . 14 0 < e
3129, 28, 30ltleii 10752 . . . . . . . . . . . . 13 0 ≤ e
32 le2sq 13495 . . . . . . . . . . . . 13 (((e ∈ ℝ ∧ 0 ≤ e) ∧ ((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴))) → (e ≤ (√‘𝐴) ↔ (e↑2) ≤ ((√‘𝐴)↑2)))
3328, 31, 32mpanl12 701 . . . . . . . . . . . 12 (((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴)) → (e ≤ (√‘𝐴) ↔ (e↑2) ≤ ((√‘𝐴)↑2)))
3421, 27, 33syl2anc 587 . . . . . . . . . . 11 (𝜑 → (e ≤ (√‘𝐴) ↔ (e↑2) ≤ ((√‘𝐴)↑2)))
3526, 34mpbird 260 . . . . . . . . . 10 (𝜑 → e ≤ (√‘𝐴))
363rpred 12419 . . . . . . . . . 10 (𝜑 → (√‘𝐵) ∈ ℝ)
37 bposlem7.6 . . . . . . . . . . . 12 (𝜑 → (e↑2) ≤ 𝐵)
382rprege0d 12426 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
39 resqrtth 14607 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((√‘𝐵)↑2) = 𝐵)
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → ((√‘𝐵)↑2) = 𝐵)
4137, 40breqtrrd 5058 . . . . . . . . . . 11 (𝜑 → (e↑2) ≤ ((√‘𝐵)↑2))
423rpge0d 12423 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (√‘𝐵))
43 le2sq 13495 . . . . . . . . . . . . 13 (((e ∈ ℝ ∧ 0 ≤ e) ∧ ((√‘𝐵) ∈ ℝ ∧ 0 ≤ (√‘𝐵))) → (e ≤ (√‘𝐵) ↔ (e↑2) ≤ ((√‘𝐵)↑2)))
4428, 31, 43mpanl12 701 . . . . . . . . . . . 12 (((√‘𝐵) ∈ ℝ ∧ 0 ≤ (√‘𝐵)) → (e ≤ (√‘𝐵) ↔ (e↑2) ≤ ((√‘𝐵)↑2)))
4536, 42, 44syl2anc 587 . . . . . . . . . . 11 (𝜑 → (e ≤ (√‘𝐵) ↔ (e↑2) ≤ ((√‘𝐵)↑2)))
4641, 45mpbird 260 . . . . . . . . . 10 (𝜑 → e ≤ (√‘𝐵))
47 logdivlt 25212 . . . . . . . . . 10 ((((√‘𝐴) ∈ ℝ ∧ e ≤ (√‘𝐴)) ∧ ((√‘𝐵) ∈ ℝ ∧ e ≤ (√‘𝐵))) → ((√‘𝐴) < (√‘𝐵) ↔ ((log‘(√‘𝐵)) / (√‘𝐵)) < ((log‘(√‘𝐴)) / (√‘𝐴))))
4821, 35, 36, 46, 47syl22anc 837 . . . . . . . . 9 (𝜑 → ((√‘𝐴) < (√‘𝐵) ↔ ((log‘(√‘𝐵)) / (√‘𝐵)) < ((log‘(√‘𝐴)) / (√‘𝐴))))
4921, 36, 27, 42lt2sqd 13615 . . . . . . . . 9 (𝜑 → ((√‘𝐴) < (√‘𝐵) ↔ ((√‘𝐴)↑2) < ((√‘𝐵)↑2)))
5020, 48, 493bitr2rd 311 . . . . . . . 8 (𝜑 → (((√‘𝐴)↑2) < ((√‘𝐵)↑2) ↔ (𝐺‘(√‘𝐵)) < (𝐺‘(√‘𝐴))))
5125, 40breq12d 5043 . . . . . . . 8 (𝜑 → (((√‘𝐴)↑2) < ((√‘𝐵)↑2) ↔ 𝐴 < 𝐵))
52 relogcl 25167 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
53 rerpdivcl 12407 . . . . . . . . . . . . 13 (((log‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / 𝑥) ∈ ℝ)
5452, 53mpancom 687 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log‘𝑥) / 𝑥) ∈ ℝ)
557, 54fmpti 6853 . . . . . . . . . . 11 𝐺:ℝ+⟶ℝ
5655ffvelrni 6827 . . . . . . . . . 10 ((√‘𝐵) ∈ ℝ+ → (𝐺‘(√‘𝐵)) ∈ ℝ)
573, 56syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(√‘𝐵)) ∈ ℝ)
5855ffvelrni 6827 . . . . . . . . . 10 ((√‘𝐴) ∈ ℝ+ → (𝐺‘(√‘𝐴)) ∈ ℝ)
5913, 58syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(√‘𝐴)) ∈ ℝ)
60 2rp 12382 . . . . . . . . . 10 2 ∈ ℝ+
61 rpsqrtcl 14616 . . . . . . . . . 10 (2 ∈ ℝ+ → (√‘2) ∈ ℝ+)
6260, 61mp1i 13 . . . . . . . . 9 (𝜑 → (√‘2) ∈ ℝ+)
6357, 59, 62ltmul2d 12461 . . . . . . . 8 (𝜑 → ((𝐺‘(√‘𝐵)) < (𝐺‘(√‘𝐴)) ↔ ((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴)))))
6450, 51, 633bitr3d 312 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴)))))
6564biimpd 232 . . . . . 6 (𝜑 → (𝐴 < 𝐵 → ((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴)))))
6611nnred 11640 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
671nnred 11640 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
68 2re 11699 . . . . . . . . . . . 12 2 ∈ ℝ
69 2pos 11728 . . . . . . . . . . . 12 0 < 2
7068, 69pm3.2i 474 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
7170a1i 11 . . . . . . . . . 10 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
72 ltdiv1 11493 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < 𝐵 ↔ (𝐴 / 2) < (𝐵 / 2)))
7366, 67, 71, 72syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 / 2) < (𝐵 / 2)))
7412rphalfcld 12431 . . . . . . . . . . 11 (𝜑 → (𝐴 / 2) ∈ ℝ+)
7574rpred 12419 . . . . . . . . . 10 (𝜑 → (𝐴 / 2) ∈ ℝ)
7628, 68remulcli 10646 . . . . . . . . . . . . 13 (e · 2) ∈ ℝ
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → (e · 2) ∈ ℝ)
7828resqcli 13545 . . . . . . . . . . . . 13 (e↑2) ∈ ℝ
7978a1i 11 . . . . . . . . . . . 12 (𝜑 → (e↑2) ∈ ℝ)
80 egt2lt3 15551 . . . . . . . . . . . . . . . . 17 (2 < e ∧ e < 3)
8180simpli 487 . . . . . . . . . . . . . . . 16 2 < e
8268, 28, 81ltleii 10752 . . . . . . . . . . . . . . 15 2 ≤ e
8368, 28, 28lemul2i 11552 . . . . . . . . . . . . . . . 16 (0 < e → (2 ≤ e ↔ (e · 2) ≤ (e · e)))
8430, 83ax-mp 5 . . . . . . . . . . . . . . 15 (2 ≤ e ↔ (e · 2) ≤ (e · e))
8582, 84mpbi 233 . . . . . . . . . . . . . 14 (e · 2) ≤ (e · e)
8628recni 10644 . . . . . . . . . . . . . . 15 e ∈ ℂ
8786sqvali 13539 . . . . . . . . . . . . . 14 (e↑2) = (e · e)
8885, 87breqtrri 5057 . . . . . . . . . . . . 13 (e · 2) ≤ (e↑2)
8988a1i 11 . . . . . . . . . . . 12 (𝜑 → (e · 2) ≤ (e↑2))
9077, 79, 66, 89, 22letrd 10786 . . . . . . . . . . 11 (𝜑 → (e · 2) ≤ 𝐴)
91 lemuldiv 11509 . . . . . . . . . . . . 13 ((e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((e · 2) ≤ 𝐴 ↔ e ≤ (𝐴 / 2)))
9228, 70, 91mp3an13 1449 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((e · 2) ≤ 𝐴 ↔ e ≤ (𝐴 / 2)))
9366, 92syl 17 . . . . . . . . . . 11 (𝜑 → ((e · 2) ≤ 𝐴 ↔ e ≤ (𝐴 / 2)))
9490, 93mpbid 235 . . . . . . . . . 10 (𝜑 → e ≤ (𝐴 / 2))
952rphalfcld 12431 . . . . . . . . . . 11 (𝜑 → (𝐵 / 2) ∈ ℝ+)
9695rpred 12419 . . . . . . . . . 10 (𝜑 → (𝐵 / 2) ∈ ℝ)
9777, 79, 67, 89, 37letrd 10786 . . . . . . . . . . 11 (𝜑 → (e · 2) ≤ 𝐵)
98 lemuldiv 11509 . . . . . . . . . . . . 13 ((e ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((e · 2) ≤ 𝐵 ↔ e ≤ (𝐵 / 2)))
9928, 70, 98mp3an13 1449 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((e · 2) ≤ 𝐵 ↔ e ≤ (𝐵 / 2)))
10067, 99syl 17 . . . . . . . . . . 11 (𝜑 → ((e · 2) ≤ 𝐵 ↔ e ≤ (𝐵 / 2)))
10197, 100mpbid 235 . . . . . . . . . 10 (𝜑 → e ≤ (𝐵 / 2))
102 logdivlt 25212 . . . . . . . . . 10 ((((𝐴 / 2) ∈ ℝ ∧ e ≤ (𝐴 / 2)) ∧ ((𝐵 / 2) ∈ ℝ ∧ e ≤ (𝐵 / 2))) → ((𝐴 / 2) < (𝐵 / 2) ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
10375, 94, 96, 101, 102syl22anc 837 . . . . . . . . 9 (𝜑 → ((𝐴 / 2) < (𝐵 / 2) ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
10473, 103bitrd 282 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
105 fveq2 6645 . . . . . . . . . . . 12 (𝑥 = (𝐵 / 2) → (log‘𝑥) = (log‘(𝐵 / 2)))
106 id 22 . . . . . . . . . . . 12 (𝑥 = (𝐵 / 2) → 𝑥 = (𝐵 / 2))
107105, 106oveq12d 7153 . . . . . . . . . . 11 (𝑥 = (𝐵 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝐵 / 2)) / (𝐵 / 2)))
108 ovex 7168 . . . . . . . . . . 11 ((log‘(𝐵 / 2)) / (𝐵 / 2)) ∈ V
109107, 7, 108fvmpt 6745 . . . . . . . . . 10 ((𝐵 / 2) ∈ ℝ+ → (𝐺‘(𝐵 / 2)) = ((log‘(𝐵 / 2)) / (𝐵 / 2)))
11095, 109syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐵 / 2)) = ((log‘(𝐵 / 2)) / (𝐵 / 2)))
111 fveq2 6645 . . . . . . . . . . . 12 (𝑥 = (𝐴 / 2) → (log‘𝑥) = (log‘(𝐴 / 2)))
112 id 22 . . . . . . . . . . . 12 (𝑥 = (𝐴 / 2) → 𝑥 = (𝐴 / 2))
113111, 112oveq12d 7153 . . . . . . . . . . 11 (𝑥 = (𝐴 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝐴 / 2)) / (𝐴 / 2)))
114 ovex 7168 . . . . . . . . . . 11 ((log‘(𝐴 / 2)) / (𝐴 / 2)) ∈ V
115113, 7, 114fvmpt 6745 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ+ → (𝐺‘(𝐴 / 2)) = ((log‘(𝐴 / 2)) / (𝐴 / 2)))
11674, 115syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐴 / 2)) = ((log‘(𝐴 / 2)) / (𝐴 / 2)))
117110, 116breq12d 5043 . . . . . . . 8 (𝜑 → ((𝐺‘(𝐵 / 2)) < (𝐺‘(𝐴 / 2)) ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
11855ffvelrni 6827 . . . . . . . . . 10 ((𝐵 / 2) ∈ ℝ+ → (𝐺‘(𝐵 / 2)) ∈ ℝ)
11995, 118syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐵 / 2)) ∈ ℝ)
12055ffvelrni 6827 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ+ → (𝐺‘(𝐴 / 2)) ∈ ℝ)
12174, 120syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐴 / 2)) ∈ ℝ)
122 9nn 11723 . . . . . . . . . . 11 9 ∈ ℕ
123 4nn 11708 . . . . . . . . . . 11 4 ∈ ℕ
124 nnrp 12388 . . . . . . . . . . . 12 (9 ∈ ℕ → 9 ∈ ℝ+)
125 nnrp 12388 . . . . . . . . . . . 12 (4 ∈ ℕ → 4 ∈ ℝ+)
126 rpdivcl 12402 . . . . . . . . . . . 12 ((9 ∈ ℝ+ ∧ 4 ∈ ℝ+) → (9 / 4) ∈ ℝ+)
127124, 125, 126syl2an 598 . . . . . . . . . . 11 ((9 ∈ ℕ ∧ 4 ∈ ℕ) → (9 / 4) ∈ ℝ+)
128122, 123, 127mp2an 691 . . . . . . . . . 10 (9 / 4) ∈ ℝ+
129128a1i 11 . . . . . . . . 9 (𝜑 → (9 / 4) ∈ ℝ+)
130119, 121, 129ltmul2d 12461 . . . . . . . 8 (𝜑 → ((𝐺‘(𝐵 / 2)) < (𝐺‘(𝐴 / 2)) ↔ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))))
131104, 117, 1303bitr2d 310 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))))
132131biimpd 232 . . . . . 6 (𝜑 → (𝐴 < 𝐵 → ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))))
13365, 132jcad 516 . . . . 5 (𝜑 → (𝐴 < 𝐵 → (((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴))) ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2))))))
134 sqrt2re 15595 . . . . . . 7 (√‘2) ∈ ℝ
135 remulcl 10611 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝐵)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝐵))) ∈ ℝ)
136134, 57, 135sylancr 590 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝐵))) ∈ ℝ)
137 9re 11724 . . . . . . . 8 9 ∈ ℝ
138 4re 11709 . . . . . . . 8 4 ∈ ℝ
139 4ne0 11733 . . . . . . . 8 4 ≠ 0
140137, 138, 139redivcli 11396 . . . . . . 7 (9 / 4) ∈ ℝ
141 remulcl 10611 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝐵 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝐵 / 2))) ∈ ℝ)
142140, 119, 141sylancr 590 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝐵 / 2))) ∈ ℝ)
143 remulcl 10611 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝐴)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝐴))) ∈ ℝ)
144134, 59, 143sylancr 590 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝐴))) ∈ ℝ)
145 remulcl 10611 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝐴 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝐴 / 2))) ∈ ℝ)
146140, 121, 145sylancr 590 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝐴 / 2))) ∈ ℝ)
147 lt2add 11114 . . . . . 6 (((((√‘2) · (𝐺‘(√‘𝐵))) ∈ ℝ ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) ∈ ℝ) ∧ (((√‘2) · (𝐺‘(√‘𝐴))) ∈ ℝ ∧ ((9 / 4) · (𝐺‘(𝐴 / 2))) ∈ ℝ)) → ((((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴))) ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))) → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2))))))
148136, 142, 144, 146, 147syl22anc 837 . . . . 5 (𝜑 → ((((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴))) ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))) → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2))))))
149133, 148syld 47 . . . 4 (𝜑 → (𝐴 < 𝐵 → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2))))))
150 ltmul2 11480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < 𝐵 ↔ (2 · 𝐴) < (2 · 𝐵)))
15166, 67, 71, 150syl3anc 1368 . . . . . 6 (𝜑 → (𝐴 < 𝐵 ↔ (2 · 𝐴) < (2 · 𝐵)))
152 rpmulcl 12400 . . . . . . . . . 10 ((2 ∈ ℝ+𝐴 ∈ ℝ+) → (2 · 𝐴) ∈ ℝ+)
15360, 12, 152sylancr 590 . . . . . . . . 9 (𝜑 → (2 · 𝐴) ∈ ℝ+)
154153rpsqrtcld 14763 . . . . . . . 8 (𝜑 → (√‘(2 · 𝐴)) ∈ ℝ+)
155 rpmulcl 12400 . . . . . . . . . 10 ((2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 · 𝐵) ∈ ℝ+)
15660, 2, 155sylancr 590 . . . . . . . . 9 (𝜑 → (2 · 𝐵) ∈ ℝ+)
157156rpsqrtcld 14763 . . . . . . . 8 (𝜑 → (√‘(2 · 𝐵)) ∈ ℝ+)
158 rprege0 12392 . . . . . . . . 9 ((√‘(2 · 𝐴)) ∈ ℝ+ → ((√‘(2 · 𝐴)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐴))))
159 rprege0 12392 . . . . . . . . 9 ((√‘(2 · 𝐵)) ∈ ℝ+ → ((√‘(2 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐵))))
160 lt2sq 13494 . . . . . . . . 9 ((((√‘(2 · 𝐴)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐴))) ∧ ((√‘(2 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐵)))) → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2)))
161158, 159, 160syl2an 598 . . . . . . . 8 (((√‘(2 · 𝐴)) ∈ ℝ+ ∧ (√‘(2 · 𝐵)) ∈ ℝ+) → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2)))
162154, 157, 161syl2anc 587 . . . . . . 7 (𝜑 → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2)))
163153rprege0d 12426 . . . . . . . . 9 (𝜑 → ((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)))
164 resqrtth 14607 . . . . . . . . 9 (((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)) → ((√‘(2 · 𝐴))↑2) = (2 · 𝐴))
165163, 164syl 17 . . . . . . . 8 (𝜑 → ((√‘(2 · 𝐴))↑2) = (2 · 𝐴))
166156rprege0d 12426 . . . . . . . . 9 (𝜑 → ((2 · 𝐵) ∈ ℝ ∧ 0 ≤ (2 · 𝐵)))
167 resqrtth 14607 . . . . . . . . 9 (((2 · 𝐵) ∈ ℝ ∧ 0 ≤ (2 · 𝐵)) → ((√‘(2 · 𝐵))↑2) = (2 · 𝐵))
168166, 167syl 17 . . . . . . . 8 (𝜑 → ((√‘(2 · 𝐵))↑2) = (2 · 𝐵))
169165, 168breq12d 5043 . . . . . . 7 (𝜑 → (((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2) ↔ (2 · 𝐴) < (2 · 𝐵)))
170162, 169bitr2d 283 . . . . . 6 (𝜑 → ((2 · 𝐴) < (2 · 𝐵) ↔ (√‘(2 · 𝐴)) < (√‘(2 · 𝐵))))
171 1lt2 11796 . . . . . . . . 9 1 < 2
172 rplogcl 25195 . . . . . . . . 9 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
17368, 171, 172mp2an 691 . . . . . . . 8 (log‘2) ∈ ℝ+
174173a1i 11 . . . . . . 7 (𝜑 → (log‘2) ∈ ℝ+)
175154, 157, 174ltdiv2d 12442 . . . . . 6 (𝜑 → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))))
176151, 170, 1753bitrd 308 . . . . 5 (𝜑 → (𝐴 < 𝐵 ↔ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))))
177176biimpd 232 . . . 4 (𝜑 → (𝐴 < 𝐵 → ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))))
178149, 177jcad 516 . . 3 (𝜑 → (𝐴 < 𝐵 → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∧ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴))))))
179136, 142readdcld 10659 . . . 4 (𝜑 → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) ∈ ℝ)
180 rpre 12385 . . . . . 6 ((log‘2) ∈ ℝ+ → (log‘2) ∈ ℝ)
181173, 180ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
182 rerpdivcl 12407 . . . . 5 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝐵)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝐵))) ∈ ℝ)
183181, 157, 182sylancr 590 . . . 4 (𝜑 → ((log‘2) / (√‘(2 · 𝐵))) ∈ ℝ)
184144, 146readdcld 10659 . . . 4 (𝜑 → (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∈ ℝ)
185 rerpdivcl 12407 . . . . 5 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝐴)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝐴))) ∈ ℝ)
186181, 154, 185sylancr 590 . . . 4 (𝜑 → ((log‘2) / (√‘(2 · 𝐴))) ∈ ℝ)
187 lt2add 11114 . . . 4 ((((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) ∈ ℝ ∧ ((log‘2) / (√‘(2 · 𝐵))) ∈ ℝ) ∧ ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∈ ℝ ∧ ((log‘2) / (√‘(2 · 𝐴))) ∈ ℝ)) → (((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∧ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))) → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
188179, 183, 184, 186, 187syl22anc 837 . . 3 (𝜑 → (((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∧ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))) → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
189178, 188syld 47 . 2 (𝜑 → (𝐴 < 𝐵 → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
190 2fveq3 6650 . . . . . . . 8 (𝑛 = 𝐵 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝐵)))
191190oveq2d 7151 . . . . . . 7 (𝑛 = 𝐵 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝐵))))
192 fvoveq1 7158 . . . . . . . 8 (𝑛 = 𝐵 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝐵 / 2)))
193192oveq2d 7151 . . . . . . 7 (𝑛 = 𝐵 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝐵 / 2))))
194191, 193oveq12d 7153 . . . . . 6 (𝑛 = 𝐵 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))))
195 oveq2 7143 . . . . . . . 8 (𝑛 = 𝐵 → (2 · 𝑛) = (2 · 𝐵))
196195fveq2d 6649 . . . . . . 7 (𝑛 = 𝐵 → (√‘(2 · 𝑛)) = (√‘(2 · 𝐵)))
197196oveq2d 7151 . . . . . 6 (𝑛 = 𝐵 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝐵))))
198194, 197oveq12d 7153 . . . . 5 (𝑛 = 𝐵 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))))
199 bposlem7.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
200 ovex 7168 . . . . 5 ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) ∈ V
201198, 199, 200fvmpt 6745 . . . 4 (𝐵 ∈ ℕ → (𝐹𝐵) = ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))))
2021, 201syl 17 . . 3 (𝜑 → (𝐹𝐵) = ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))))
203 2fveq3 6650 . . . . . . . 8 (𝑛 = 𝐴 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝐴)))
204203oveq2d 7151 . . . . . . 7 (𝑛 = 𝐴 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝐴))))
205 fvoveq1 7158 . . . . . . . 8 (𝑛 = 𝐴 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝐴 / 2)))
206205oveq2d 7151 . . . . . . 7 (𝑛 = 𝐴 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝐴 / 2))))
207204, 206oveq12d 7153 . . . . . 6 (𝑛 = 𝐴 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))))
208 oveq2 7143 . . . . . . . 8 (𝑛 = 𝐴 → (2 · 𝑛) = (2 · 𝐴))
209208fveq2d 6649 . . . . . . 7 (𝑛 = 𝐴 → (√‘(2 · 𝑛)) = (√‘(2 · 𝐴)))
210209oveq2d 7151 . . . . . 6 (𝑛 = 𝐴 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝐴))))
211207, 210oveq12d 7153 . . . . 5 (𝑛 = 𝐴 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))))
212 ovex 7168 . . . . 5 ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))) ∈ V
213211, 199, 212fvmpt 6745 . . . 4 (𝐴 ∈ ℕ → (𝐹𝐴) = ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))))
21411, 213syl 17 . . 3 (𝜑 → (𝐹𝐴) = ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))))
215202, 214breq12d 5043 . 2 (𝜑 → ((𝐹𝐵) < (𝐹𝐴) ↔ ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
216189, 215sylibrd 262 1 (𝜑 → (𝐴 < 𝐵 → (𝐹𝐵) < (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  4c4 11682  9c9 11687  +crp 12377  cexp 13425  csqrt 14584  eceu 15408  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by:  bposlem9  25876
  Copyright terms: Public domain W3C validator