Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p1rcl Structured version   Visualization version   GIF version

Theorem aks6d1c1p1rcl 42090
Description: Reverse closure of the introspective relation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p1rcl.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
aks6d1c1p1rcl.2 (𝜑𝐸 𝐹)
Assertion
Ref Expression
aks6d1c1p1rcl (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
Distinct variable group:   𝐵,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓)   𝐵(𝑦)   𝐷(𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑅(𝑦,𝑒,𝑓)   𝐸(𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝐹(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑂(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p1rcl
StepHypRef Expression
1 aks6d1c1p1rcl.2 . 2 (𝜑𝐸 𝐹)
2 aks6d1c1p1rcl.1 . . . . 5 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
3 df-3an 1088 . . . . . 6 ((𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦))) ↔ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦))))
43opabbii 5215 . . . . 5 {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))} = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
52, 4eqtri 2763 . . . 4 = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
6 opabssxp 5781 . . . 4 {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))} ⊆ (ℕ × 𝐵)
75, 6eqsstri 4030 . . 3 ⊆ (ℕ × 𝐵)
87brel 5754 . 2 (𝐸 𝐹 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
91, 8syl 17 1 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  {copab 5210   × cxp 5687  cfv 6563  (class class class)co 7431  cn 12264   PrimRoots cprimroots 42073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695
This theorem is referenced by:  aks6d1c1p3  42092  aks6d1c1p4  42093  aks6d1c1p5  42094  aks6d1c1p6  42096  aks6d1c1p8  42097  aks6d1c2lem3  42108  aks6d1c2lem4  42109
  Copyright terms: Public domain W3C validator