Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p1rcl Structured version   Visualization version   GIF version

Theorem aks6d1c1p1rcl 42096
Description: Reverse closure of the introspective relation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p1rcl.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
aks6d1c1p1rcl.2 (𝜑𝐸 𝐹)
Assertion
Ref Expression
aks6d1c1p1rcl (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
Distinct variable group:   𝐵,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓)   𝐵(𝑦)   𝐷(𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑅(𝑦,𝑒,𝑓)   𝐸(𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝐹(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑂(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p1rcl
StepHypRef Expression
1 aks6d1c1p1rcl.2 . 2 (𝜑𝐸 𝐹)
2 aks6d1c1p1rcl.1 . . . . 5 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
3 df-3an 1088 . . . . . 6 ((𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦))) ↔ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦))))
43opabbii 5174 . . . . 5 {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))} = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
52, 4eqtri 2752 . . . 4 = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
6 opabssxp 5731 . . . 4 {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))} ⊆ (ℕ × 𝐵)
75, 6eqsstri 3993 . . 3 ⊆ (ℕ × 𝐵)
87brel 5703 . 2 (𝐸 𝐹 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
91, 8syl 17 1 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  {copab 5169   × cxp 5636  cfv 6511  (class class class)co 7387  cn 12186   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644
This theorem is referenced by:  aks6d1c1p3  42098  aks6d1c1p4  42099  aks6d1c1p5  42100  aks6d1c1p6  42102  aks6d1c1p8  42103  aks6d1c2lem3  42114  aks6d1c2lem4  42115
  Copyright terms: Public domain W3C validator