![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c1p1rcl | Structured version Visualization version GIF version |
Description: Reverse closure of the introspective relation. (Contributed by metakunt, 25-Apr-2025.) |
Ref | Expression |
---|---|
aks6d1c1p1rcl.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
aks6d1c1p1rcl.2 | ⊢ (𝜑 → 𝐸 ∼ 𝐹) |
Ref | Expression |
---|---|
aks6d1c1p1rcl | ⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks6d1c1p1rcl.2 | . 2 ⊢ (𝜑 → 𝐸 ∼ 𝐹) | |
2 | aks6d1c1p1rcl.1 | . . . . 5 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} | |
3 | df-3an 1086 | . . . . . 6 ⊢ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦))) ↔ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))) | |
4 | 3 | opabbii 5219 | . . . . 5 ⊢ {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
5 | 2, 4 | eqtri 2756 | . . . 4 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
6 | opabssxp 5774 | . . . 4 ⊢ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} ⊆ (ℕ × 𝐵) | |
7 | 5, 6 | eqsstri 4016 | . . 3 ⊢ ∼ ⊆ (ℕ × 𝐵) |
8 | 7 | brel 5747 | . 2 ⊢ (𝐸 ∼ 𝐹 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
9 | 1, 8 | syl 17 | 1 ⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 class class class wbr 5152 {copab 5214 × cxp 5680 ‘cfv 6553 (class class class)co 7426 ℕcn 12250 PrimRoots cprimroots 41594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 |
This theorem is referenced by: aks6d1c1p3 41613 aks6d1c1p4 41614 aks6d1c1p5 41615 aks6d1c1p6 41617 aks6d1c1p8 41618 aks6d1c2lem3 41629 aks6d1c2lem4 41630 |
Copyright terms: Public domain | W3C validator |