Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p1rcl Structured version   Visualization version   GIF version

Theorem aks6d1c1p1rcl 41611
Description: Reverse closure of the introspective relation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p1rcl.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
aks6d1c1p1rcl.2 (𝜑𝐸 𝐹)
Assertion
Ref Expression
aks6d1c1p1rcl (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
Distinct variable group:   𝐵,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓)   𝐵(𝑦)   𝐷(𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑅(𝑦,𝑒,𝑓)   𝐸(𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝐹(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑂(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p1rcl
StepHypRef Expression
1 aks6d1c1p1rcl.2 . 2 (𝜑𝐸 𝐹)
2 aks6d1c1p1rcl.1 . . . . 5 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
3 df-3an 1086 . . . . . 6 ((𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦))) ↔ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦))))
43opabbii 5219 . . . . 5 {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))} = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
52, 4eqtri 2756 . . . 4 = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
6 opabssxp 5774 . . . 4 {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ ℕ ∧ 𝑓𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))} ⊆ (ℕ × 𝐵)
75, 6eqsstri 4016 . . 3 ⊆ (ℕ × 𝐵)
87brel 5747 . 2 (𝐸 𝐹 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
91, 8syl 17 1 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058   class class class wbr 5152  {copab 5214   × cxp 5680  cfv 6553  (class class class)co 7426  cn 12250   PrimRoots cprimroots 41594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688
This theorem is referenced by:  aks6d1c1p3  41613  aks6d1c1p4  41614  aks6d1c1p5  41615  aks6d1c1p6  41617  aks6d1c1p8  41618  aks6d1c2lem3  41629  aks6d1c2lem4  41630
  Copyright terms: Public domain W3C validator