| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c1p1rcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the introspective relation. (Contributed by metakunt, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c1p1rcl.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
| aks6d1c1p1rcl.2 | ⊢ (𝜑 → 𝐸 ∼ 𝐹) |
| Ref | Expression |
|---|---|
| aks6d1c1p1rcl | ⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c1p1rcl.2 | . 2 ⊢ (𝜑 → 𝐸 ∼ 𝐹) | |
| 2 | aks6d1c1p1rcl.1 | . . . . 5 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} | |
| 3 | df-3an 1088 | . . . . . 6 ⊢ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦))) ↔ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))) | |
| 4 | 3 | opabbii 5174 | . . . . 5 ⊢ {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
| 5 | 2, 4 | eqtri 2752 | . . . 4 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
| 6 | opabssxp 5731 | . . . 4 ⊢ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} ⊆ (ℕ × 𝐵) | |
| 7 | 5, 6 | eqsstri 3993 | . . 3 ⊢ ∼ ⊆ (ℕ × 𝐵) |
| 8 | 7 | brel 5703 | . 2 ⊢ (𝐸 ∼ 𝐹 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
| 9 | 1, 8 | syl 17 | 1 ⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 {copab 5169 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ℕcn 12186 PrimRoots cprimroots 42079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: aks6d1c1p3 42098 aks6d1c1p4 42099 aks6d1c1p5 42100 aks6d1c1p6 42102 aks6d1c1p8 42103 aks6d1c2lem3 42114 aks6d1c2lem4 42115 |
| Copyright terms: Public domain | W3C validator |