![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c1p1rcl | Structured version Visualization version GIF version |
Description: Reverse closure of the introspective relation. (Contributed by metakunt, 25-Apr-2025.) |
Ref | Expression |
---|---|
aks6d1c1p1rcl.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
aks6d1c1p1rcl.2 | ⊢ (𝜑 → 𝐸 ∼ 𝐹) |
Ref | Expression |
---|---|
aks6d1c1p1rcl | ⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks6d1c1p1rcl.2 | . 2 ⊢ (𝜑 → 𝐸 ∼ 𝐹) | |
2 | aks6d1c1p1rcl.1 | . . . . 5 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} | |
3 | df-3an 1089 | . . . . . 6 ⊢ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦))) ↔ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))) | |
4 | 3 | opabbii 5233 | . . . . 5 ⊢ {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
5 | 2, 4 | eqtri 2768 | . . . 4 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
6 | opabssxp 5792 | . . . 4 ⊢ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} ⊆ (ℕ × 𝐵) | |
7 | 5, 6 | eqsstri 4043 | . . 3 ⊢ ∼ ⊆ (ℕ × 𝐵) |
8 | 7 | brel 5765 | . 2 ⊢ (𝐸 ∼ 𝐹 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
9 | 1, 8 | syl 17 | 1 ⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 {copab 5228 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ℕcn 12293 PrimRoots cprimroots 42048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 |
This theorem is referenced by: aks6d1c1p3 42067 aks6d1c1p4 42068 aks6d1c1p5 42069 aks6d1c1p6 42071 aks6d1c1p8 42072 aks6d1c2lem3 42083 aks6d1c2lem4 42084 |
Copyright terms: Public domain | W3C validator |