Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c2lem3 Structured version   Visualization version   GIF version

Theorem aks6d1c2lem3 42099
Description: Lemma for aks6d1c2 42103 to simplify context. (Contributed by metakunt, 1-May-2025.)
Hypotheses
Ref Expression
aks6d1c2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c2.2 𝑃 = (chr‘𝐾)
aks6d1c2.3 (𝜑𝐾 ∈ Field)
aks6d1c2.4 (𝜑𝑃 ∈ ℙ)
aks6d1c2.5 (𝜑𝑅 ∈ ℕ)
aks6d1c2.6 (𝜑𝑁 ∈ ℕ)
aks6d1c2.7 (𝜑𝑃𝑁)
aks6d1c2.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c2.9 (𝜑𝐹:(0...𝐴)⟶ℕ0)
aks6d1c2.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c2.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c2.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c2.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c2.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c2.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c2.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c2.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c2.18 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
aks6d1c2.19 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
aks6d1c2.20 (𝜑𝐼𝐶)
aks6d1c2.21 (𝜑𝐽𝐶)
aks6d1c2.22 (𝜑𝐼 < 𝐽)
aks6d1c2.23 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c2.24 𝑋 = (var1𝐾)
aks6d1c2.25 𝑆 = ((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))
aks6d1c2.26 (𝜑𝑈 ∈ ℕ)
aks6d1c2.27 (𝜑𝐽 = (𝐼 + (𝑈 · 𝑅)))
aks6d1c2p3.1 (𝜑𝑠 ∈ (ℕ0m (0...𝐴)))
aks6d1c2p3.2 (𝜑𝑟 ∈ (0...𝐵))
aks6d1c2p3.3 (𝜑𝑜 ∈ (0...𝐵))
aks6d1c2p3.4 (𝜑𝐽 = (𝑟𝐸𝑜))
aks6d1c2p3.5 (𝜑𝑝 ∈ (0...𝐵))
aks6d1c2p3.6 (𝜑𝑞 ∈ (0...𝐵))
aks6d1c2p3.7 (𝜑𝐼 = (𝑝𝐸𝑞))
aks6d1c2p3.8 (𝜑𝐼 ∈ ℕ0)
Assertion
Ref Expression
aks6d1c2lem3 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑔,𝑖   𝑥,𝐴   𝑒,𝐺,𝑓,𝑦   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   𝑥,𝐾   𝑦,𝑀   𝑁,𝑎   𝑒,𝑁,𝑓,𝑦   𝑘,𝑁,𝑙   𝑥,𝑁   𝑃,𝑒,𝑓,𝑦   𝑃,𝑘,𝑙   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝜑,𝑎   𝑒,𝑜,𝑓,𝑦   𝑒,𝑝,𝑓,𝑦   𝑒,𝑞,𝑓,𝑦   𝑒,𝑟,𝑓,𝑦   𝑒,𝑠,𝑓,𝑦   𝜑,𝑔,𝑖   𝑔,𝑠,𝑖   𝑘,𝑜,𝑙   𝑘,𝑝,𝑙   𝜑,𝑘,𝑙   𝑘,𝑞,𝑙   𝑘,𝑟,𝑙   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓,,𝑜,𝑠,𝑟,𝑞,𝑝)   𝐴(𝑦,𝑒,𝑓,,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐶(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑃(𝑔,,𝑖,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎)   (𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑙)   𝑅(𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑈(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐸(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   (𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐹(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐺(𝑥,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐼(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐽(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐾(,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐿(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑀(𝑥,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑁(𝑔,,𝑖,𝑜,𝑠,𝑟,𝑞,𝑝)   𝑋(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)

Proof of Theorem aks6d1c2lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c2p3.4 . . . 4 (𝜑𝐽 = (𝑟𝐸𝑜))
2 aks6d1c2.12 . . . . . 6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
32a1i 11 . . . . 5 (𝜑𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))))
4 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → 𝑘 = 𝑟)
54oveq2d 7365 . . . . . 6 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → (𝑃𝑘) = (𝑃𝑟))
6 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → 𝑙 = 𝑜)
76oveq2d 7365 . . . . . 6 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑜))
85, 7oveq12d 7367 . . . . 5 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
9 aks6d1c2p3.2 . . . . . 6 (𝜑𝑟 ∈ (0...𝐵))
10 elfznn0 13523 . . . . . 6 (𝑟 ∈ (0...𝐵) → 𝑟 ∈ ℕ0)
119, 10syl 17 . . . . 5 (𝜑𝑟 ∈ ℕ0)
12 aks6d1c2p3.3 . . . . . 6 (𝜑𝑜 ∈ (0...𝐵))
13 elfznn0 13523 . . . . . 6 (𝑜 ∈ (0...𝐵) → 𝑜 ∈ ℕ0)
1412, 13syl 17 . . . . 5 (𝜑𝑜 ∈ ℕ0)
15 ovexd 7384 . . . . 5 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ V)
163, 8, 11, 14, 15ovmpod 7501 . . . 4 (𝜑 → (𝑟𝐸𝑜) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
171, 16eqtrd 2764 . . 3 (𝜑𝐽 = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
1817oveq1d 7364 . 2 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
19 aks6d1c2p3.7 . . . . 5 (𝜑𝐼 = (𝑝𝐸𝑞))
20 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → 𝑘 = 𝑝)
2120oveq2d 7365 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → (𝑃𝑘) = (𝑃𝑝))
22 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → 𝑙 = 𝑞)
2322oveq2d 7365 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑞))
2421, 23oveq12d 7367 . . . . . 6 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
25 aks6d1c2p3.5 . . . . . . 7 (𝜑𝑝 ∈ (0...𝐵))
26 elfznn0 13523 . . . . . . 7 (𝑝 ∈ (0...𝐵) → 𝑝 ∈ ℕ0)
2725, 26syl 17 . . . . . 6 (𝜑𝑝 ∈ ℕ0)
28 aks6d1c2p3.6 . . . . . . 7 (𝜑𝑞 ∈ (0...𝐵))
29 elfznn0 13523 . . . . . . 7 (𝑞 ∈ (0...𝐵) → 𝑞 ∈ ℕ0)
3028, 29syl 17 . . . . . 6 (𝜑𝑞 ∈ ℕ0)
31 ovexd 7384 . . . . . 6 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ V)
323, 24, 27, 30, 31ovmpod 7501 . . . . 5 (𝜑 → (𝑝𝐸𝑞) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
3319, 32eqtrd 2764 . . . 4 (𝜑𝐼 = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
3433oveq1d 7364 . . 3 (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
35 fveq2 6822 . . . . . . 7 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑠))‘𝑦) = (((eval1𝐾)‘(𝐺𝑠))‘𝑀))
3635oveq2d 7365 . . . . . 6 (𝑦 = 𝑀 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
37 oveq2 7357 . . . . . . 7 (𝑦 = 𝑀 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦) = (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀))
3837fveq2d 6826 . . . . . 6 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)))
3936, 38eqeq12d 2745 . . . . 5 (𝑦 = 𝑀 → ((((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)) ↔ (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀))))
40 aks6d1c2.1 . . . . . . 7 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
41 aks6d1c2.2 . . . . . . 7 𝑃 = (chr‘𝐾)
42 aks6d1c2.3 . . . . . . 7 (𝜑𝐾 ∈ Field)
43 aks6d1c2.4 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
44 aks6d1c2.5 . . . . . . 7 (𝜑𝑅 ∈ ℕ)
45 aks6d1c2.6 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
46 aks6d1c2.7 . . . . . . 7 (𝜑𝑃𝑁)
47 aks6d1c2.8 . . . . . . 7 (𝜑 → (𝑁 gcd 𝑅) = 1)
48 aks6d1c2p3.1 . . . . . . . 8 (𝜑𝑠 ∈ (ℕ0m (0...𝐴)))
49 nn0ex 12390 . . . . . . . . . 10 0 ∈ V
5049a1i 11 . . . . . . . . 9 (𝜑 → ℕ0 ∈ V)
51 ovexd 7384 . . . . . . . . 9 (𝜑 → (0...𝐴) ∈ V)
52 elmapg 8766 . . . . . . . . 9 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑠 ∈ (ℕ0m (0...𝐴)) ↔ 𝑠:(0...𝐴)⟶ℕ0))
5350, 51, 52syl2anc 584 . . . . . . . 8 (𝜑 → (𝑠 ∈ (ℕ0m (0...𝐴)) ↔ 𝑠:(0...𝐴)⟶ℕ0))
5448, 53mpbid 232 . . . . . . 7 (𝜑𝑠:(0...𝐴)⟶ℕ0)
55 aks6d1c2.10 . . . . . . 7 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
56 aks6d1c2.11 . . . . . . 7 (𝜑𝐴 ∈ ℕ0)
57 eqid 2729 . . . . . . 7 ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))
58 aks6d1c2.14 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
59 aks6d1c2.15 . . . . . . 7 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
6040, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 27, 30, 57, 58, 59aks6d1c1rh 42098 . . . . . 6 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) (𝐺𝑠))
6140, 60aks6d1c1p1rcl 42081 . . . . . . . 8 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ ℕ ∧ (𝐺𝑠) ∈ (Base‘(Poly1𝐾))))
6261simprd 495 . . . . . . 7 (𝜑 → (𝐺𝑠) ∈ (Base‘(Poly1𝐾)))
6361simpld 494 . . . . . . 7 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ ℕ)
6440, 62, 63aks6d1c1p1 42080 . . . . . 6 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) (𝐺𝑠) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦))))
6560, 64mpbid 232 . . . . 5 (𝜑 → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)))
66 aks6d1c2.16 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
6739, 65, 66rspcdva 3578 . . . 4 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)))
6833eqcomd 2735 . . . . . . . 8 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) = 𝐼)
6968oveq1d 7364 . . . . . . 7 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
7017eqcomd 2735 . . . . . . . . 9 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) = 𝐽)
7170oveq1d 7364 . . . . . . . 8 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀) = (𝐽(.g‘(mulGrp‘𝐾))𝑀))
72 aks6d1c2.27 . . . . . . . . . 10 (𝜑𝐽 = (𝐼 + (𝑈 · 𝑅)))
7372oveq1d 7364 . . . . . . . . 9 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀))
7442fldcrngd 20627 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
75 crngring 20130 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
7674, 75syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
77 eqid 2729 . . . . . . . . . . . . 13 (mulGrp‘𝐾) = (mulGrp‘𝐾)
7877ringmgp 20124 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
7976, 78syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
80 aks6d1c2p3.8 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ0)
81 aks6d1c2.26 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℕ)
8281nnnn0d 12445 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℕ0)
8344nnnn0d 12445 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
8482, 83nn0mulcld 12450 . . . . . . . . . . . 12 (𝜑 → (𝑈 · 𝑅) ∈ ℕ0)
8577crngmgp 20126 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
8674, 85syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
87 eqid 2729 . . . . . . . . . . . . . . . 16 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
8886, 83, 87isprimroot 42066 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣))))
8988biimpd 229 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣))))
9066, 89mpd 15 . . . . . . . . . . . . 13 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣)))
9190simp1d 1142 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
9280, 84, 913jca 1128 . . . . . . . . . . 11 (𝜑 → (𝐼 ∈ ℕ0 ∧ (𝑈 · 𝑅) ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾))))
93 eqid 2729 . . . . . . . . . . . 12 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
94 eqid 2729 . . . . . . . . . . . 12 (+g‘(mulGrp‘𝐾)) = (+g‘(mulGrp‘𝐾))
9593, 87, 94mulgnn0dir 18983 . . . . . . . . . . 11 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝐼 ∈ ℕ0 ∧ (𝑈 · 𝑅) ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)))
9679, 92, 95syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)))
9782, 83, 913jca 1128 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 ∈ ℕ0𝑅 ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾))))
9893, 87mulgnn0ass 18989 . . . . . . . . . . . . . 14 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑈 ∈ ℕ0𝑅 ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)))
9979, 97, 98syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)))
10090simp2d 1143 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)))
101100oveq2d 7365 . . . . . . . . . . . . . 14 (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)) = (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))))
102 eqid 2729 . . . . . . . . . . . . . . . 16 (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐾))
10393, 87, 102mulgnn0z 18980 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ 𝑈 ∈ ℕ0) → (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (0g‘(mulGrp‘𝐾)))
10479, 82, 103syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (0g‘(mulGrp‘𝐾)))
105101, 104eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)) = (0g‘(mulGrp‘𝐾)))
10699, 105eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)))
107106oveq2d 7365 . . . . . . . . . . 11 (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))))
10893, 87, 79, 80, 91mulgnn0cld 18974 . . . . . . . . . . . 12 (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘(mulGrp‘𝐾)))
10993, 94, 102mndrid 18629 . . . . . . . . . . . 12 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝐼(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘(mulGrp‘𝐾))) → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11079, 108, 109syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
111107, 110eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11296, 111eqtrd 2764 . . . . . . . . 9 (𝜑 → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11373, 112eqtrd 2764 . . . . . . . 8 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11471, 113eqtr2d 2765 . . . . . . 7 (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))𝑀) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))
11569, 114eqtrd 2764 . . . . . 6 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))
116115fveq2d 6826 . . . . 5 (𝜑 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))
11735oveq2d 7365 . . . . . . . 8 (𝑦 = 𝑀 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
118 oveq2 7357 . . . . . . . . 9 (𝑦 = 𝑀 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))
119118fveq2d 6826 . . . . . . . 8 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))
120117, 119eqeq12d 2745 . . . . . . 7 (𝑦 = 𝑀 → ((((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)) ↔ (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))))
121 eqid 2729 . . . . . . . . 9 ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))
12240, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 11, 14, 121, 58, 59aks6d1c1rh 42098 . . . . . . . 8 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) (𝐺𝑠))
12340, 122aks6d1c1p1rcl 42081 . . . . . . . . . 10 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℕ ∧ (𝐺𝑠) ∈ (Base‘(Poly1𝐾))))
124123simpld 494 . . . . . . . . 9 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℕ)
12540, 62, 124aks6d1c1p1 42080 . . . . . . . 8 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) (𝐺𝑠) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦))))
126122, 125mpbid 232 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)))
127120, 126, 66rspcdva 3578 . . . . . 6 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))
128127eqcomd 2735 . . . . 5 (𝜑 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
129116, 128eqtrd 2764 . . . 4 (𝜑 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
13067, 129eqtrd 2764 . . 3 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
13134, 130eqtr2d 2765 . 2 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
13218, 131eqtrd 2764 1 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436   class class class wbr 5092  {copab 5154  cmpt 5173   × cxp 5617  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  m cmap 8753  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149   / cdiv 11777  cn 12128  0cn0 12384  ...cfz 13410  cfl 13694  cexp 13968  chash 14237  csqrt 15140  cdvds 16163   gcd cgcd 16405  cprime 16582  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  -gcsg 18814  .gcmg 18946  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingIso crs 20355  Fieldcfield 20615  ℤRHomczrh 21406  chrcchr 21408  ℤ/nczn 21409  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  eval1ce1 22199   PrimRoots cprimroots 42064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-od 19407  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-rim 20358  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-chr 21412  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evl1 22201  df-primroots 42065
This theorem is referenced by:  aks6d1c2lem4  42100
  Copyright terms: Public domain W3C validator