Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c2lem3 Structured version   Visualization version   GIF version

Theorem aks6d1c2lem3 42108
Description: Lemma for aks6d1c2 42112 to simplify context. (Contributed by metakunt, 1-May-2025.)
Hypotheses
Ref Expression
aks6d1c2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c2.2 𝑃 = (chr‘𝐾)
aks6d1c2.3 (𝜑𝐾 ∈ Field)
aks6d1c2.4 (𝜑𝑃 ∈ ℙ)
aks6d1c2.5 (𝜑𝑅 ∈ ℕ)
aks6d1c2.6 (𝜑𝑁 ∈ ℕ)
aks6d1c2.7 (𝜑𝑃𝑁)
aks6d1c2.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c2.9 (𝜑𝐹:(0...𝐴)⟶ℕ0)
aks6d1c2.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c2.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c2.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c2.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c2.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c2.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c2.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c2.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c2.18 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
aks6d1c2.19 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
aks6d1c2.20 (𝜑𝐼𝐶)
aks6d1c2.21 (𝜑𝐽𝐶)
aks6d1c2.22 (𝜑𝐼 < 𝐽)
aks6d1c2.23 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c2.24 𝑋 = (var1𝐾)
aks6d1c2.25 𝑆 = ((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))
aks6d1c2.26 (𝜑𝑈 ∈ ℕ)
aks6d1c2.27 (𝜑𝐽 = (𝐼 + (𝑈 · 𝑅)))
aks6d1c2p3.1 (𝜑𝑠 ∈ (ℕ0m (0...𝐴)))
aks6d1c2p3.2 (𝜑𝑟 ∈ (0...𝐵))
aks6d1c2p3.3 (𝜑𝑜 ∈ (0...𝐵))
aks6d1c2p3.4 (𝜑𝐽 = (𝑟𝐸𝑜))
aks6d1c2p3.5 (𝜑𝑝 ∈ (0...𝐵))
aks6d1c2p3.6 (𝜑𝑞 ∈ (0...𝐵))
aks6d1c2p3.7 (𝜑𝐼 = (𝑝𝐸𝑞))
aks6d1c2p3.8 (𝜑𝐼 ∈ ℕ0)
Assertion
Ref Expression
aks6d1c2lem3 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑔,𝑖   𝑥,𝐴   𝑒,𝐺,𝑓,𝑦   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   𝑥,𝐾   𝑦,𝑀   𝑁,𝑎   𝑒,𝑁,𝑓,𝑦   𝑘,𝑁,𝑙   𝑥,𝑁   𝑃,𝑒,𝑓,𝑦   𝑃,𝑘,𝑙   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝜑,𝑎   𝑒,𝑜,𝑓,𝑦   𝑒,𝑝,𝑓,𝑦   𝑒,𝑞,𝑓,𝑦   𝑒,𝑟,𝑓,𝑦   𝑒,𝑠,𝑓,𝑦   𝜑,𝑔,𝑖   𝑔,𝑠,𝑖   𝑘,𝑜,𝑙   𝑘,𝑝,𝑙   𝜑,𝑘,𝑙   𝑘,𝑞,𝑙   𝑘,𝑟,𝑙   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓,,𝑜,𝑠,𝑟,𝑞,𝑝)   𝐴(𝑦,𝑒,𝑓,,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐶(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑃(𝑔,,𝑖,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎)   (𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑙)   𝑅(𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑈(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐸(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   (𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐹(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐺(𝑥,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐼(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐽(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐾(,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐿(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑀(𝑥,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑁(𝑔,,𝑖,𝑜,𝑠,𝑟,𝑞,𝑝)   𝑋(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)

Proof of Theorem aks6d1c2lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c2p3.4 . . . 4 (𝜑𝐽 = (𝑟𝐸𝑜))
2 aks6d1c2.12 . . . . . 6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
32a1i 11 . . . . 5 (𝜑𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))))
4 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → 𝑘 = 𝑟)
54oveq2d 7447 . . . . . 6 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → (𝑃𝑘) = (𝑃𝑟))
6 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → 𝑙 = 𝑜)
76oveq2d 7447 . . . . . 6 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑜))
85, 7oveq12d 7449 . . . . 5 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
9 aks6d1c2p3.2 . . . . . 6 (𝜑𝑟 ∈ (0...𝐵))
10 elfznn0 13657 . . . . . 6 (𝑟 ∈ (0...𝐵) → 𝑟 ∈ ℕ0)
119, 10syl 17 . . . . 5 (𝜑𝑟 ∈ ℕ0)
12 aks6d1c2p3.3 . . . . . 6 (𝜑𝑜 ∈ (0...𝐵))
13 elfznn0 13657 . . . . . 6 (𝑜 ∈ (0...𝐵) → 𝑜 ∈ ℕ0)
1412, 13syl 17 . . . . 5 (𝜑𝑜 ∈ ℕ0)
15 ovexd 7466 . . . . 5 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ V)
163, 8, 11, 14, 15ovmpod 7585 . . . 4 (𝜑 → (𝑟𝐸𝑜) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
171, 16eqtrd 2775 . . 3 (𝜑𝐽 = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
1817oveq1d 7446 . 2 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
19 aks6d1c2p3.7 . . . . 5 (𝜑𝐼 = (𝑝𝐸𝑞))
20 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → 𝑘 = 𝑝)
2120oveq2d 7447 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → (𝑃𝑘) = (𝑃𝑝))
22 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → 𝑙 = 𝑞)
2322oveq2d 7447 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑞))
2421, 23oveq12d 7449 . . . . . 6 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
25 aks6d1c2p3.5 . . . . . . 7 (𝜑𝑝 ∈ (0...𝐵))
26 elfznn0 13657 . . . . . . 7 (𝑝 ∈ (0...𝐵) → 𝑝 ∈ ℕ0)
2725, 26syl 17 . . . . . 6 (𝜑𝑝 ∈ ℕ0)
28 aks6d1c2p3.6 . . . . . . 7 (𝜑𝑞 ∈ (0...𝐵))
29 elfznn0 13657 . . . . . . 7 (𝑞 ∈ (0...𝐵) → 𝑞 ∈ ℕ0)
3028, 29syl 17 . . . . . 6 (𝜑𝑞 ∈ ℕ0)
31 ovexd 7466 . . . . . 6 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ V)
323, 24, 27, 30, 31ovmpod 7585 . . . . 5 (𝜑 → (𝑝𝐸𝑞) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
3319, 32eqtrd 2775 . . . 4 (𝜑𝐼 = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
3433oveq1d 7446 . . 3 (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
35 fveq2 6907 . . . . . . 7 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑠))‘𝑦) = (((eval1𝐾)‘(𝐺𝑠))‘𝑀))
3635oveq2d 7447 . . . . . 6 (𝑦 = 𝑀 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
37 oveq2 7439 . . . . . . 7 (𝑦 = 𝑀 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦) = (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀))
3837fveq2d 6911 . . . . . 6 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)))
3936, 38eqeq12d 2751 . . . . 5 (𝑦 = 𝑀 → ((((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)) ↔ (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀))))
40 aks6d1c2.1 . . . . . . 7 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
41 aks6d1c2.2 . . . . . . 7 𝑃 = (chr‘𝐾)
42 aks6d1c2.3 . . . . . . 7 (𝜑𝐾 ∈ Field)
43 aks6d1c2.4 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
44 aks6d1c2.5 . . . . . . 7 (𝜑𝑅 ∈ ℕ)
45 aks6d1c2.6 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
46 aks6d1c2.7 . . . . . . 7 (𝜑𝑃𝑁)
47 aks6d1c2.8 . . . . . . 7 (𝜑 → (𝑁 gcd 𝑅) = 1)
48 aks6d1c2p3.1 . . . . . . . 8 (𝜑𝑠 ∈ (ℕ0m (0...𝐴)))
49 nn0ex 12530 . . . . . . . . . 10 0 ∈ V
5049a1i 11 . . . . . . . . 9 (𝜑 → ℕ0 ∈ V)
51 ovexd 7466 . . . . . . . . 9 (𝜑 → (0...𝐴) ∈ V)
52 elmapg 8878 . . . . . . . . 9 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑠 ∈ (ℕ0m (0...𝐴)) ↔ 𝑠:(0...𝐴)⟶ℕ0))
5350, 51, 52syl2anc 584 . . . . . . . 8 (𝜑 → (𝑠 ∈ (ℕ0m (0...𝐴)) ↔ 𝑠:(0...𝐴)⟶ℕ0))
5448, 53mpbid 232 . . . . . . 7 (𝜑𝑠:(0...𝐴)⟶ℕ0)
55 aks6d1c2.10 . . . . . . 7 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
56 aks6d1c2.11 . . . . . . 7 (𝜑𝐴 ∈ ℕ0)
57 eqid 2735 . . . . . . 7 ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))
58 aks6d1c2.14 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
59 aks6d1c2.15 . . . . . . 7 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
6040, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 27, 30, 57, 58, 59aks6d1c1rh 42107 . . . . . 6 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) (𝐺𝑠))
6140, 60aks6d1c1p1rcl 42090 . . . . . . . 8 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ ℕ ∧ (𝐺𝑠) ∈ (Base‘(Poly1𝐾))))
6261simprd 495 . . . . . . 7 (𝜑 → (𝐺𝑠) ∈ (Base‘(Poly1𝐾)))
6361simpld 494 . . . . . . 7 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ ℕ)
6440, 62, 63aks6d1c1p1 42089 . . . . . 6 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) (𝐺𝑠) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦))))
6560, 64mpbid 232 . . . . 5 (𝜑 → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)))
66 aks6d1c2.16 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
6739, 65, 66rspcdva 3623 . . . 4 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)))
6833eqcomd 2741 . . . . . . . 8 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) = 𝐼)
6968oveq1d 7446 . . . . . . 7 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
7017eqcomd 2741 . . . . . . . . 9 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) = 𝐽)
7170oveq1d 7446 . . . . . . . 8 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀) = (𝐽(.g‘(mulGrp‘𝐾))𝑀))
72 aks6d1c2.27 . . . . . . . . . 10 (𝜑𝐽 = (𝐼 + (𝑈 · 𝑅)))
7372oveq1d 7446 . . . . . . . . 9 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀))
7442fldcrngd 20759 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
75 crngring 20263 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
7674, 75syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
77 eqid 2735 . . . . . . . . . . . . 13 (mulGrp‘𝐾) = (mulGrp‘𝐾)
7877ringmgp 20257 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
7976, 78syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
80 aks6d1c2p3.8 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ0)
81 aks6d1c2.26 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℕ)
8281nnnn0d 12585 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℕ0)
8344nnnn0d 12585 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
8482, 83nn0mulcld 12590 . . . . . . . . . . . 12 (𝜑 → (𝑈 · 𝑅) ∈ ℕ0)
8577crngmgp 20259 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
8674, 85syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
87 eqid 2735 . . . . . . . . . . . . . . . 16 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
8886, 83, 87isprimroot 42075 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣))))
8988biimpd 229 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣))))
9066, 89mpd 15 . . . . . . . . . . . . 13 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣)))
9190simp1d 1141 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
9280, 84, 913jca 1127 . . . . . . . . . . 11 (𝜑 → (𝐼 ∈ ℕ0 ∧ (𝑈 · 𝑅) ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾))))
93 eqid 2735 . . . . . . . . . . . 12 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
94 eqid 2735 . . . . . . . . . . . 12 (+g‘(mulGrp‘𝐾)) = (+g‘(mulGrp‘𝐾))
9593, 87, 94mulgnn0dir 19135 . . . . . . . . . . 11 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝐼 ∈ ℕ0 ∧ (𝑈 · 𝑅) ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)))
9679, 92, 95syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)))
9782, 83, 913jca 1127 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 ∈ ℕ0𝑅 ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾))))
9893, 87mulgnn0ass 19141 . . . . . . . . . . . . . 14 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑈 ∈ ℕ0𝑅 ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)))
9979, 97, 98syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)))
10090simp2d 1142 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)))
101100oveq2d 7447 . . . . . . . . . . . . . 14 (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)) = (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))))
102 eqid 2735 . . . . . . . . . . . . . . . 16 (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐾))
10393, 87, 102mulgnn0z 19132 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ 𝑈 ∈ ℕ0) → (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (0g‘(mulGrp‘𝐾)))
10479, 82, 103syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (0g‘(mulGrp‘𝐾)))
105101, 104eqtrd 2775 . . . . . . . . . . . . 13 (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)) = (0g‘(mulGrp‘𝐾)))
10699, 105eqtrd 2775 . . . . . . . . . . . 12 (𝜑 → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)))
107106oveq2d 7447 . . . . . . . . . . 11 (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))))
10893, 87, 79, 80, 91mulgnn0cld 19126 . . . . . . . . . . . 12 (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘(mulGrp‘𝐾)))
10993, 94, 102mndrid 18781 . . . . . . . . . . . 12 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝐼(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘(mulGrp‘𝐾))) → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11079, 108, 109syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
111107, 110eqtrd 2775 . . . . . . . . . 10 (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11296, 111eqtrd 2775 . . . . . . . . 9 (𝜑 → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11373, 112eqtrd 2775 . . . . . . . 8 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11471, 113eqtr2d 2776 . . . . . . 7 (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))𝑀) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))
11569, 114eqtrd 2775 . . . . . 6 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))
116115fveq2d 6911 . . . . 5 (𝜑 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))
11735oveq2d 7447 . . . . . . . 8 (𝑦 = 𝑀 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
118 oveq2 7439 . . . . . . . . 9 (𝑦 = 𝑀 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))
119118fveq2d 6911 . . . . . . . 8 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))
120117, 119eqeq12d 2751 . . . . . . 7 (𝑦 = 𝑀 → ((((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)) ↔ (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))))
121 eqid 2735 . . . . . . . . 9 ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))
12240, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 11, 14, 121, 58, 59aks6d1c1rh 42107 . . . . . . . 8 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) (𝐺𝑠))
12340, 122aks6d1c1p1rcl 42090 . . . . . . . . . 10 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℕ ∧ (𝐺𝑠) ∈ (Base‘(Poly1𝐾))))
124123simpld 494 . . . . . . . . 9 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℕ)
12540, 62, 124aks6d1c1p1 42089 . . . . . . . 8 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) (𝐺𝑠) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦))))
126122, 125mpbid 232 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)))
127120, 126, 66rspcdva 3623 . . . . . 6 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))
128127eqcomd 2741 . . . . 5 (𝜑 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
129116, 128eqtrd 2775 . . . 4 (𝜑 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
13067, 129eqtrd 2775 . . 3 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
13134, 130eqtr2d 2776 . 2 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
13218, 131eqtrd 2775 1 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478   class class class wbr 5148  {copab 5210  cmpt 5231   × cxp 5687  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293   / cdiv 11918  cn 12264  0cn0 12524  ...cfz 13544  cfl 13827  cexp 14099  chash 14366  csqrt 15269  cdvds 16287   gcd cgcd 16528  cprime 16705  Basecbs 17245  +gcplusg 17298  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760  -gcsg 18966  .gcmg 19098  CMndccmn 19813  mulGrpcmgp 20152  Ringcrg 20251  CRingccrg 20252   RingIso crs 20487  Fieldcfield 20747  ℤRHomczrh 21528  chrcchr 21530  ℤ/nczn 21531  algSccascl 21890  var1cv1 22193  Poly1cpl1 22194  eval1ce1 22334   PrimRoots cprimroots 42073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-od 19561  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-rim 20490  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-lmod 20877  df-lss 20948  df-lsp 20988  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-chr 21534  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evl1 22336  df-primroots 42074
This theorem is referenced by:  aks6d1c2lem4  42109
  Copyright terms: Public domain W3C validator