Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c2lem3 Structured version   Visualization version   GIF version

Theorem aks6d1c2lem3 41629
Description: Lemma for aks6d1c2 41633 to simplify context. (Contributed by metakunt, 1-May-2025.)
Hypotheses
Ref Expression
aks6d1c2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c2.2 𝑃 = (chr‘𝐾)
aks6d1c2.3 (𝜑𝐾 ∈ Field)
aks6d1c2.4 (𝜑𝑃 ∈ ℙ)
aks6d1c2.5 (𝜑𝑅 ∈ ℕ)
aks6d1c2.6 (𝜑𝑁 ∈ ℕ)
aks6d1c2.7 (𝜑𝑃𝑁)
aks6d1c2.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c2.9 (𝜑𝐹:(0...𝐴)⟶ℕ0)
aks6d1c2.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c2.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c2.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c2.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c2.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c2.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c2.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c2.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c2.18 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
aks6d1c2.19 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
aks6d1c2.20 (𝜑𝐼𝐶)
aks6d1c2.21 (𝜑𝐽𝐶)
aks6d1c2.22 (𝜑𝐼 < 𝐽)
aks6d1c2.23 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c2.24 𝑋 = (var1𝐾)
aks6d1c2.25 𝑆 = ((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))
aks6d1c2.26 (𝜑𝑈 ∈ ℕ)
aks6d1c2.27 (𝜑𝐽 = (𝐼 + (𝑈 · 𝑅)))
aks6d1c2p3.1 (𝜑𝑠 ∈ (ℕ0m (0...𝐴)))
aks6d1c2p3.2 (𝜑𝑟 ∈ (0...𝐵))
aks6d1c2p3.3 (𝜑𝑜 ∈ (0...𝐵))
aks6d1c2p3.4 (𝜑𝐽 = (𝑟𝐸𝑜))
aks6d1c2p3.5 (𝜑𝑝 ∈ (0...𝐵))
aks6d1c2p3.6 (𝜑𝑞 ∈ (0...𝐵))
aks6d1c2p3.7 (𝜑𝐼 = (𝑝𝐸𝑞))
aks6d1c2p3.8 (𝜑𝐼 ∈ ℕ0)
Assertion
Ref Expression
aks6d1c2lem3 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑔,𝑖   𝑥,𝐴   𝑒,𝐺,𝑓,𝑦   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   𝑥,𝐾   𝑦,𝑀   𝑁,𝑎   𝑒,𝑁,𝑓,𝑦   𝑘,𝑁,𝑙   𝑥,𝑁   𝑃,𝑒,𝑓,𝑦   𝑃,𝑘,𝑙   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝜑,𝑎   𝑒,𝑜,𝑓,𝑦   𝑒,𝑝,𝑓,𝑦   𝑒,𝑞,𝑓,𝑦   𝑒,𝑟,𝑓,𝑦   𝑒,𝑠,𝑓,𝑦   𝜑,𝑔,𝑖   𝑔,𝑠,𝑖   𝑘,𝑜,𝑙   𝑘,𝑝,𝑙   𝜑,𝑘,𝑙   𝑘,𝑞,𝑙   𝑘,𝑟,𝑙   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓,,𝑜,𝑠,𝑟,𝑞,𝑝)   𝐴(𝑦,𝑒,𝑓,,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐶(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑃(𝑔,,𝑖,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎)   (𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑙)   𝑅(𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑈(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐸(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   (𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐹(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐺(𝑥,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐼(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐽(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝐾(,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐿(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑀(𝑥,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)   𝑁(𝑔,,𝑖,𝑜,𝑠,𝑟,𝑞,𝑝)   𝑋(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑜,𝑠,𝑟,𝑞,𝑝,𝑎,𝑙)

Proof of Theorem aks6d1c2lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c2p3.4 . . . 4 (𝜑𝐽 = (𝑟𝐸𝑜))
2 aks6d1c2.12 . . . . . 6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
32a1i 11 . . . . 5 (𝜑𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))))
4 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → 𝑘 = 𝑟)
54oveq2d 7442 . . . . . 6 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → (𝑃𝑘) = (𝑃𝑟))
6 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → 𝑙 = 𝑜)
76oveq2d 7442 . . . . . 6 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑜))
85, 7oveq12d 7444 . . . . 5 ((𝜑 ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
9 aks6d1c2p3.2 . . . . . 6 (𝜑𝑟 ∈ (0...𝐵))
10 elfznn0 13634 . . . . . 6 (𝑟 ∈ (0...𝐵) → 𝑟 ∈ ℕ0)
119, 10syl 17 . . . . 5 (𝜑𝑟 ∈ ℕ0)
12 aks6d1c2p3.3 . . . . . 6 (𝜑𝑜 ∈ (0...𝐵))
13 elfznn0 13634 . . . . . 6 (𝑜 ∈ (0...𝐵) → 𝑜 ∈ ℕ0)
1412, 13syl 17 . . . . 5 (𝜑𝑜 ∈ ℕ0)
15 ovexd 7461 . . . . 5 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ V)
163, 8, 11, 14, 15ovmpod 7579 . . . 4 (𝜑 → (𝑟𝐸𝑜) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
171, 16eqtrd 2768 . . 3 (𝜑𝐽 = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
1817oveq1d 7441 . 2 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
19 aks6d1c2p3.7 . . . . 5 (𝜑𝐼 = (𝑝𝐸𝑞))
20 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → 𝑘 = 𝑝)
2120oveq2d 7442 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → (𝑃𝑘) = (𝑃𝑝))
22 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → 𝑙 = 𝑞)
2322oveq2d 7442 . . . . . . 7 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑞))
2421, 23oveq12d 7444 . . . . . 6 ((𝜑 ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
25 aks6d1c2p3.5 . . . . . . 7 (𝜑𝑝 ∈ (0...𝐵))
26 elfznn0 13634 . . . . . . 7 (𝑝 ∈ (0...𝐵) → 𝑝 ∈ ℕ0)
2725, 26syl 17 . . . . . 6 (𝜑𝑝 ∈ ℕ0)
28 aks6d1c2p3.6 . . . . . . 7 (𝜑𝑞 ∈ (0...𝐵))
29 elfznn0 13634 . . . . . . 7 (𝑞 ∈ (0...𝐵) → 𝑞 ∈ ℕ0)
3028, 29syl 17 . . . . . 6 (𝜑𝑞 ∈ ℕ0)
31 ovexd 7461 . . . . . 6 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ V)
323, 24, 27, 30, 31ovmpod 7579 . . . . 5 (𝜑 → (𝑝𝐸𝑞) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
3319, 32eqtrd 2768 . . . 4 (𝜑𝐼 = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
3433oveq1d 7441 . . 3 (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
35 fveq2 6902 . . . . . . 7 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑠))‘𝑦) = (((eval1𝐾)‘(𝐺𝑠))‘𝑀))
3635oveq2d 7442 . . . . . 6 (𝑦 = 𝑀 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
37 oveq2 7434 . . . . . . 7 (𝑦 = 𝑀 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦) = (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀))
3837fveq2d 6906 . . . . . 6 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)))
3936, 38eqeq12d 2744 . . . . 5 (𝑦 = 𝑀 → ((((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)) ↔ (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀))))
40 aks6d1c2.1 . . . . . . 7 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
41 aks6d1c2.2 . . . . . . 7 𝑃 = (chr‘𝐾)
42 aks6d1c2.3 . . . . . . 7 (𝜑𝐾 ∈ Field)
43 aks6d1c2.4 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
44 aks6d1c2.5 . . . . . . 7 (𝜑𝑅 ∈ ℕ)
45 aks6d1c2.6 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
46 aks6d1c2.7 . . . . . . 7 (𝜑𝑃𝑁)
47 aks6d1c2.8 . . . . . . 7 (𝜑 → (𝑁 gcd 𝑅) = 1)
48 aks6d1c2p3.1 . . . . . . . 8 (𝜑𝑠 ∈ (ℕ0m (0...𝐴)))
49 nn0ex 12516 . . . . . . . . . 10 0 ∈ V
5049a1i 11 . . . . . . . . 9 (𝜑 → ℕ0 ∈ V)
51 ovexd 7461 . . . . . . . . 9 (𝜑 → (0...𝐴) ∈ V)
52 elmapg 8864 . . . . . . . . 9 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑠 ∈ (ℕ0m (0...𝐴)) ↔ 𝑠:(0...𝐴)⟶ℕ0))
5350, 51, 52syl2anc 582 . . . . . . . 8 (𝜑 → (𝑠 ∈ (ℕ0m (0...𝐴)) ↔ 𝑠:(0...𝐴)⟶ℕ0))
5448, 53mpbid 231 . . . . . . 7 (𝜑𝑠:(0...𝐴)⟶ℕ0)
55 aks6d1c2.10 . . . . . . 7 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
56 aks6d1c2.11 . . . . . . 7 (𝜑𝐴 ∈ ℕ0)
57 eqid 2728 . . . . . . 7 ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))
58 aks6d1c2.14 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
59 aks6d1c2.15 . . . . . . 7 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
6040, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 27, 30, 57, 58, 59aks6d1c1rh 41628 . . . . . 6 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) (𝐺𝑠))
6140, 60aks6d1c1p1rcl 41611 . . . . . . . 8 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ ℕ ∧ (𝐺𝑠) ∈ (Base‘(Poly1𝐾))))
6261simprd 494 . . . . . . 7 (𝜑 → (𝐺𝑠) ∈ (Base‘(Poly1𝐾)))
6361simpld 493 . . . . . . 7 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ ℕ)
6440, 62, 63aks6d1c1p1 41610 . . . . . 6 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) (𝐺𝑠) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦))))
6560, 64mpbid 231 . . . . 5 (𝜑 → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)))
66 aks6d1c2.16 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
6739, 65, 66rspcdva 3612 . . . 4 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)))
6833eqcomd 2734 . . . . . . . 8 (𝜑 → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) = 𝐼)
6968oveq1d 7441 . . . . . . 7 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
7017eqcomd 2734 . . . . . . . . 9 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) = 𝐽)
7170oveq1d 7441 . . . . . . . 8 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀) = (𝐽(.g‘(mulGrp‘𝐾))𝑀))
72 aks6d1c2.27 . . . . . . . . . 10 (𝜑𝐽 = (𝐼 + (𝑈 · 𝑅)))
7372oveq1d 7441 . . . . . . . . 9 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀))
7442fldcrngd 20644 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
75 crngring 20192 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
7674, 75syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
77 eqid 2728 . . . . . . . . . . . . 13 (mulGrp‘𝐾) = (mulGrp‘𝐾)
7877ringmgp 20186 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
7976, 78syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
80 aks6d1c2p3.8 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ0)
81 aks6d1c2.26 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℕ)
8281nnnn0d 12570 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℕ0)
8344nnnn0d 12570 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
8482, 83nn0mulcld 12575 . . . . . . . . . . . 12 (𝜑 → (𝑈 · 𝑅) ∈ ℕ0)
8577crngmgp 20188 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
8674, 85syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
87 eqid 2728 . . . . . . . . . . . . . . . 16 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
8886, 83, 87isprimroot 41596 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣))))
8988biimpd 228 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣))))
9066, 89mpd 15 . . . . . . . . . . . . 13 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣)))
9190simp1d 1139 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
9280, 84, 913jca 1125 . . . . . . . . . . 11 (𝜑 → (𝐼 ∈ ℕ0 ∧ (𝑈 · 𝑅) ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾))))
93 eqid 2728 . . . . . . . . . . . 12 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
94 eqid 2728 . . . . . . . . . . . 12 (+g‘(mulGrp‘𝐾)) = (+g‘(mulGrp‘𝐾))
9593, 87, 94mulgnn0dir 19066 . . . . . . . . . . 11 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝐼 ∈ ℕ0 ∧ (𝑈 · 𝑅) ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)))
9679, 92, 95syl2anc 582 . . . . . . . . . 10 (𝜑 → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)))
9782, 83, 913jca 1125 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 ∈ ℕ0𝑅 ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾))))
9893, 87mulgnn0ass 19072 . . . . . . . . . . . . . 14 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑈 ∈ ℕ0𝑅 ∈ ℕ0𝑀 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)))
9979, 97, 98syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)))
10090simp2d 1140 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)))
101100oveq2d 7442 . . . . . . . . . . . . . 14 (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)) = (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))))
102 eqid 2728 . . . . . . . . . . . . . . . 16 (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐾))
10393, 87, 102mulgnn0z 19063 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ 𝑈 ∈ ℕ0) → (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (0g‘(mulGrp‘𝐾)))
10479, 82, 103syl2anc 582 . . . . . . . . . . . . . 14 (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (0g‘(mulGrp‘𝐾)))
105101, 104eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)) = (0g‘(mulGrp‘𝐾)))
10699, 105eqtrd 2768 . . . . . . . . . . . 12 (𝜑 → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)))
107106oveq2d 7442 . . . . . . . . . . 11 (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))))
10893, 87, 79, 80, 91mulgnn0cld 19057 . . . . . . . . . . . 12 (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘(mulGrp‘𝐾)))
10993, 94, 102mndrid 18722 . . . . . . . . . . . 12 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝐼(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘(mulGrp‘𝐾))) → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11079, 108, 109syl2anc 582 . . . . . . . . . . 11 (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
111107, 110eqtrd 2768 . . . . . . . . . 10 (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11296, 111eqtrd 2768 . . . . . . . . 9 (𝜑 → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11373, 112eqtrd 2768 . . . . . . . 8 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀))
11471, 113eqtr2d 2769 . . . . . . 7 (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))𝑀) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))
11569, 114eqtrd 2768 . . . . . 6 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))
116115fveq2d 6906 . . . . 5 (𝜑 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))
11735oveq2d 7442 . . . . . . . 8 (𝑦 = 𝑀 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
118 oveq2 7434 . . . . . . . . 9 (𝑦 = 𝑀 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))
119118fveq2d 6906 . . . . . . . 8 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))
120117, 119eqeq12d 2744 . . . . . . 7 (𝑦 = 𝑀 → ((((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)) ↔ (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))))
121 eqid 2728 . . . . . . . . 9 ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))
12240, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 11, 14, 121, 58, 59aks6d1c1rh 41628 . . . . . . . 8 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) (𝐺𝑠))
12340, 122aks6d1c1p1rcl 41611 . . . . . . . . . 10 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℕ ∧ (𝐺𝑠) ∈ (Base‘(Poly1𝐾))))
124123simpld 493 . . . . . . . . 9 (𝜑 → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℕ)
12540, 62, 124aks6d1c1p1 41610 . . . . . . . 8 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) (𝐺𝑠) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦))))
126122, 125mpbid 231 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)))
127120, 126, 66rspcdva 3612 . . . . . 6 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))
128127eqcomd 2734 . . . . 5 (𝜑 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
129116, 128eqtrd 2768 . . . 4 (𝜑 → (((eval1𝐾)‘(𝐺𝑠))‘(((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
13067, 129eqtrd 2768 . . 3 (𝜑 → (((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
13134, 130eqtr2d 2769 . 2 (𝜑 → (((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
13218, 131eqtrd 2768 1 (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  Vcvv 3473   class class class wbr 5152  {copab 5214  cmpt 5235   × cxp 5680  cima 5685  wf 6549  cfv 6553  (class class class)co 7426  cmpo 7428  m cmap 8851  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151   < clt 11286   / cdiv 11909  cn 12250  0cn0 12510  ...cfz 13524  cfl 13795  cexp 14066  chash 14329  csqrt 15220  cdvds 16238   gcd cgcd 16476  cprime 16649  Basecbs 17187  +gcplusg 17240  0gc0g 17428   Σg cgsu 17429  Mndcmnd 18701  -gcsg 18899  .gcmg 19030  CMndccmn 19742  mulGrpcmgp 20081  Ringcrg 20180  CRingccrg 20181   RingIso crs 20416  Fieldcfield 20632  ℤRHomczrh 21432  chrcchr 21434  ℤ/nczn 21435  algSccascl 21793  var1cv1 22102  Poly1cpl1 22103  eval1ce1 22240   PrimRoots cprimroots 41594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-ofr 7692  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-xnn0 12583  df-z 12597  df-dec 12716  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-dvds 16239  df-gcd 16477  df-prm 16650  df-phi 16742  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-0g 17430  df-gsum 17431  df-prds 17436  df-pws 17438  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-submnd 18748  df-grp 18900  df-minusg 18901  df-sbg 18902  df-mulg 19031  df-subg 19085  df-ghm 19175  df-cntz 19275  df-od 19490  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-srg 20134  df-ring 20182  df-cring 20183  df-oppr 20280  df-dvdsr 20303  df-unit 20304  df-invr 20334  df-dvr 20347  df-rhm 20418  df-rim 20419  df-subrng 20490  df-subrg 20515  df-drng 20633  df-field 20634  df-lmod 20752  df-lss 20823  df-lsp 20863  df-cnfld 21287  df-zring 21380  df-zrh 21436  df-chr 21438  df-assa 21794  df-asp 21795  df-ascl 21796  df-psr 21849  df-mvr 21850  df-mpl 21851  df-opsr 21853  df-evls 22025  df-evl 22026  df-psr1 22106  df-vr1 22107  df-ply1 22108  df-coe1 22109  df-evl1 22242  df-primroots 41595
This theorem is referenced by:  aks6d1c2lem4  41630
  Copyright terms: Public domain W3C validator