Step | Hyp | Ref
| Expression |
1 | | aks6d1c2p3.4 |
. . . 4
⊢ (𝜑 → 𝐽 = (𝑟𝐸𝑜)) |
2 | | aks6d1c2.12 |
. . . . . 6
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)))) |
4 | | simprl 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → 𝑘 = 𝑟) |
5 | 4 | oveq2d 7442 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → (𝑃↑𝑘) = (𝑃↑𝑟)) |
6 | | simprr 771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → 𝑙 = 𝑜) |
7 | 6 | oveq2d 7442 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑜)) |
8 | 5, 7 | oveq12d 7444 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))) |
9 | | aks6d1c2p3.2 |
. . . . . 6
⊢ (𝜑 → 𝑟 ∈ (0...𝐵)) |
10 | | elfznn0 13634 |
. . . . . 6
⊢ (𝑟 ∈ (0...𝐵) → 𝑟 ∈ ℕ0) |
11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑟 ∈ ℕ0) |
12 | | aks6d1c2p3.3 |
. . . . . 6
⊢ (𝜑 → 𝑜 ∈ (0...𝐵)) |
13 | | elfznn0 13634 |
. . . . . 6
⊢ (𝑜 ∈ (0...𝐵) → 𝑜 ∈ ℕ0) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑜 ∈ ℕ0) |
15 | | ovexd 7461 |
. . . . 5
⊢ (𝜑 → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ V) |
16 | 3, 8, 11, 14, 15 | ovmpod 7579 |
. . . 4
⊢ (𝜑 → (𝑟𝐸𝑜) = ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))) |
17 | 1, 16 | eqtrd 2768 |
. . 3
⊢ (𝜑 → 𝐽 = ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))) |
18 | 17 | oveq1d 7441 |
. 2
⊢ (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
19 | | aks6d1c2p3.7 |
. . . . 5
⊢ (𝜑 → 𝐼 = (𝑝𝐸𝑞)) |
20 | | simprl 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → 𝑘 = 𝑝) |
21 | 20 | oveq2d 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → (𝑃↑𝑘) = (𝑃↑𝑝)) |
22 | | simprr 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → 𝑙 = 𝑞) |
23 | 22 | oveq2d 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑞)) |
24 | 21, 23 | oveq12d 7444 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))) |
25 | | aks6d1c2p3.5 |
. . . . . . 7
⊢ (𝜑 → 𝑝 ∈ (0...𝐵)) |
26 | | elfznn0 13634 |
. . . . . . 7
⊢ (𝑝 ∈ (0...𝐵) → 𝑝 ∈ ℕ0) |
27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑝 ∈ ℕ0) |
28 | | aks6d1c2p3.6 |
. . . . . . 7
⊢ (𝜑 → 𝑞 ∈ (0...𝐵)) |
29 | | elfznn0 13634 |
. . . . . . 7
⊢ (𝑞 ∈ (0...𝐵) → 𝑞 ∈ ℕ0) |
30 | 28, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑞 ∈ ℕ0) |
31 | | ovexd 7461 |
. . . . . 6
⊢ (𝜑 → ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ V) |
32 | 3, 24, 27, 30, 31 | ovmpod 7579 |
. . . . 5
⊢ (𝜑 → (𝑝𝐸𝑞) = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))) |
33 | 19, 32 | eqtrd 2768 |
. . . 4
⊢ (𝜑 → 𝐼 = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))) |
34 | 33 | oveq1d 7441 |
. . 3
⊢ (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
35 | | fveq2 6902 |
. . . . . . 7
⊢ (𝑦 = 𝑀 → (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑦) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) |
36 | 35 | oveq2d 7442 |
. . . . . 6
⊢ (𝑦 = 𝑀 → (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑦)) = (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
37 | | oveq2 7434 |
. . . . . . 7
⊢ (𝑦 = 𝑀 → (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦) = (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)) |
38 | 37 | fveq2d 6906 |
. . . . . 6
⊢ (𝑦 = 𝑀 → (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀))) |
39 | 36, 38 | eqeq12d 2744 |
. . . . 5
⊢ (𝑦 = 𝑀 → ((((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑦)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)) ↔ (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)))) |
40 | | aks6d1c2.1 |
. . . . . . 7
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
41 | | aks6d1c2.2 |
. . . . . . 7
⊢ 𝑃 = (chr‘𝐾) |
42 | | aks6d1c2.3 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Field) |
43 | | aks6d1c2.4 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℙ) |
44 | | aks6d1c2.5 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℕ) |
45 | | aks6d1c2.6 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
46 | | aks6d1c2.7 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
47 | | aks6d1c2.8 |
. . . . . . 7
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
48 | | aks6d1c2p3.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑠 ∈ (ℕ0
↑m (0...𝐴))) |
49 | | nn0ex 12516 |
. . . . . . . . . 10
⊢
ℕ0 ∈ V |
50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℕ0 ∈
V) |
51 | | ovexd 7461 |
. . . . . . . . 9
⊢ (𝜑 → (0...𝐴) ∈ V) |
52 | | elmapg 8864 |
. . . . . . . . 9
⊢
((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑠 ∈ (ℕ0
↑m (0...𝐴))
↔ 𝑠:(0...𝐴)⟶ℕ0)) |
53 | 50, 51, 52 | syl2anc 582 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (ℕ0
↑m (0...𝐴))
↔ 𝑠:(0...𝐴)⟶ℕ0)) |
54 | 48, 53 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → 𝑠:(0...𝐴)⟶ℕ0) |
55 | | aks6d1c2.10 |
. . . . . . 7
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
56 | | aks6d1c2.11 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
57 | | eqid 2728 |
. . . . . . 7
⊢ ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) |
58 | | aks6d1c2.14 |
. . . . . . 7
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
59 | | aks6d1c2.15 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
60 | 40, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 27, 30, 57, 58, 59 | aks6d1c1rh 41628 |
. . . . . 6
⊢ (𝜑 → ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∼ (𝐺‘𝑠)) |
61 | 40, 60 | aks6d1c1p1rcl 41611 |
. . . . . . . 8
⊢ (𝜑 → (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ ℕ ∧ (𝐺‘𝑠) ∈
(Base‘(Poly1‘𝐾)))) |
62 | 61 | simprd 494 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝑠) ∈
(Base‘(Poly1‘𝐾))) |
63 | 61 | simpld 493 |
. . . . . . 7
⊢ (𝜑 → ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ ℕ) |
64 | 40, 62, 63 | aks6d1c1p1 41610 |
. . . . . 6
⊢ (𝜑 → (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∼ (𝐺‘𝑠) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑦)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦)))) |
65 | 60, 64 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑦)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑦))) |
66 | | aks6d1c2.16 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
67 | 39, 65, 66 | rspcdva 3612 |
. . . 4
⊢ (𝜑 → (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀))) |
68 | 33 | eqcomd 2734 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) = 𝐼) |
69 | 68 | oveq1d 7441 |
. . . . . . 7
⊢ (𝜑 → (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀)) |
70 | 17 | eqcomd 2734 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) = 𝐽) |
71 | 70 | oveq1d 7441 |
. . . . . . . 8
⊢ (𝜑 → (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀) = (𝐽(.g‘(mulGrp‘𝐾))𝑀)) |
72 | | aks6d1c2.27 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 = (𝐼 + (𝑈 · 𝑅))) |
73 | 72 | oveq1d 7441 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀)) |
74 | 42 | fldcrngd 20644 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ CRing) |
75 | | crngring 20192 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ CRing → 𝐾 ∈ Ring) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ Ring) |
77 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
78 | 77 | ringmgp 20186 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Ring →
(mulGrp‘𝐾) ∈
Mnd) |
79 | 76, 78 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (mulGrp‘𝐾) ∈ Mnd) |
80 | | aks6d1c2p3.8 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
81 | | aks6d1c2.26 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ ℕ) |
82 | 81 | nnnn0d 12570 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈
ℕ0) |
83 | 44 | nnnn0d 12570 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
84 | 82, 83 | nn0mulcld 12575 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 · 𝑅) ∈
ℕ0) |
85 | 77 | crngmgp 20188 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ CRing →
(mulGrp‘𝐾) ∈
CMnd) |
86 | 74, 85 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (mulGrp‘𝐾) ∈ CMnd) |
87 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(.g‘(mulGrp‘𝐾)) =
(.g‘(mulGrp‘𝐾)) |
88 | 86, 83, 87 | isprimroot 41596 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣)))) |
89 | 88 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣)))) |
90 | 66, 89 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣))) |
91 | 90 | simp1d 1139 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (Base‘(mulGrp‘𝐾))) |
92 | 80, 84, 91 | 3jca 1125 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼 ∈ ℕ0 ∧ (𝑈 · 𝑅) ∈ ℕ0 ∧ 𝑀 ∈
(Base‘(mulGrp‘𝐾)))) |
93 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾)) |
94 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(+g‘(mulGrp‘𝐾)) =
(+g‘(mulGrp‘𝐾)) |
95 | 93, 87, 94 | mulgnn0dir 19066 |
. . . . . . . . . . 11
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ (𝐼 ∈
ℕ0 ∧ (𝑈 · 𝑅) ∈ ℕ0 ∧ 𝑀 ∈
(Base‘(mulGrp‘𝐾)))) → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀))) |
96 | 79, 92, 95 | syl2anc 582 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀))) |
97 | 82, 83, 91 | 3jca 1125 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0
∧ 𝑀 ∈
(Base‘(mulGrp‘𝐾)))) |
98 | 93, 87 | mulgnn0ass 19072 |
. . . . . . . . . . . . . 14
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ (𝑈 ∈
ℕ0 ∧ 𝑅
∈ ℕ0 ∧ 𝑀 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀))) |
99 | 79, 97, 98 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀))) |
100 | 90 | simp2d 1140 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾))) |
101 | 100 | oveq2d 7442 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)) = (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾)))) |
102 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘(mulGrp‘𝐾)) =
(0g‘(mulGrp‘𝐾)) |
103 | 93, 87, 102 | mulgnn0z 19063 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑈 ∈
ℕ0) → (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) =
(0g‘(mulGrp‘𝐾))) |
104 | 79, 82, 103 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) =
(0g‘(mulGrp‘𝐾))) |
105 | 101, 104 | eqtrd 2768 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑈(.g‘(mulGrp‘𝐾))(𝑅(.g‘(mulGrp‘𝐾))𝑀)) =
(0g‘(mulGrp‘𝐾))) |
106 | 99, 105 | eqtrd 2768 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾))) |
107 | 106 | oveq2d 7442 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾)))) |
108 | 93, 87, 79, 80, 91 | mulgnn0cld 19057 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘(mulGrp‘𝐾))) |
109 | 93, 94, 102 | mndrid 18722 |
. . . . . . . . . . . 12
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ (𝐼(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘(mulGrp‘𝐾))) → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (𝐼(.g‘(mulGrp‘𝐾))𝑀)) |
110 | 79, 108, 109 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))(0g‘(mulGrp‘𝐾))) = (𝐼(.g‘(mulGrp‘𝐾))𝑀)) |
111 | 107, 110 | eqtrd 2768 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐼(.g‘(mulGrp‘𝐾))𝑀)(+g‘(mulGrp‘𝐾))((𝑈 · 𝑅)(.g‘(mulGrp‘𝐾))𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))𝑀)) |
112 | 96, 111 | eqtrd 2768 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐼 + (𝑈 · 𝑅))(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀)) |
113 | 73, 112 | eqtrd 2768 |
. . . . . . . 8
⊢ (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))𝑀) = (𝐼(.g‘(mulGrp‘𝐾))𝑀)) |
114 | 71, 113 | eqtr2d 2769 |
. . . . . . 7
⊢ (𝜑 → (𝐼(.g‘(mulGrp‘𝐾))𝑀) = (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)) |
115 | 69, 114 | eqtrd 2768 |
. . . . . 6
⊢ (𝜑 → (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀) = (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)) |
116 | 115 | fveq2d 6906 |
. . . . 5
⊢ (𝜑 →
(((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))) |
117 | 35 | oveq2d 7442 |
. . . . . . . 8
⊢ (𝑦 = 𝑀 → (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑦)) = (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
118 | | oveq2 7434 |
. . . . . . . . 9
⊢ (𝑦 = 𝑀 → (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦) = (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)) |
119 | 118 | fveq2d 6906 |
. . . . . . . 8
⊢ (𝑦 = 𝑀 → (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))) |
120 | 117, 119 | eqeq12d 2744 |
. . . . . . 7
⊢ (𝑦 = 𝑀 → ((((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑦)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)) ↔ (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)))) |
121 | | eqid 2728 |
. . . . . . . . 9
⊢ ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) = ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) |
122 | 40, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 11, 14, 121, 58, 59 | aks6d1c1rh 41628 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∼ (𝐺‘𝑠)) |
123 | 40, 122 | aks6d1c1p1rcl 41611 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℕ ∧ (𝐺‘𝑠) ∈
(Base‘(Poly1‘𝐾)))) |
124 | 123 | simpld 493 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℕ) |
125 | 40, 62, 124 | aks6d1c1p1 41610 |
. . . . . . . 8
⊢ (𝜑 → (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∼ (𝐺‘𝑠) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑦)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦)))) |
126 | 122, 125 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑦)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑦))) |
127 | 120, 126,
66 | rspcdva 3612 |
. . . . . 6
⊢ (𝜑 → (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀))) |
128 | 127 | eqcomd 2734 |
. . . . 5
⊢ (𝜑 →
(((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))𝑀)) = (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
129 | 116, 128 | eqtrd 2768 |
. . . 4
⊢ (𝜑 →
(((eval1‘𝐾)‘(𝐺‘𝑠))‘(((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))𝑀)) = (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
130 | 67, 129 | eqtrd 2768 |
. . 3
⊢ (𝜑 → (((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
131 | 34, 130 | eqtr2d 2769 |
. 2
⊢ (𝜑 → (((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
132 | 18, 131 | eqtrd 2768 |
1
⊢ (𝜑 → (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |