Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p2 Structured version   Visualization version   GIF version

Theorem aks6d1c1p2 42092
Description: 𝑃 and linear factors are introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p2.2 𝑆 = (Poly1𝐾)
aks6d1c1p2.3 𝐵 = (Base‘𝑆)
aks6d1c1p2.4 𝑋 = (var1𝐾)
aks6d1c1p2.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p2.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p2.7 = (.g𝑉)
aks6d1c1p2.8 𝐶 = (algSc‘𝑆)
aks6d1c1p2.9 𝐷 = (.g𝑊)
aks6d1c1p2.10 𝑃 = (chr‘𝐾)
aks6d1c1p2.11 𝑂 = (eval1𝐾)
aks6d1c1p2.12 + = (+g𝑆)
aks6d1c1p2.13 (𝜑𝐾 ∈ Field)
aks6d1c1p2.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p2.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p2.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p2.17 (𝜑𝑃𝑁)
aks6d1c1p2.18 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
aks6d1c1p2.19 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
aks6d1c1p2 (𝜑𝑃 𝐹)
Distinct variable groups:   ,𝑒,𝑓   𝐵,𝑒,𝑓   𝑒,𝐹,𝑓,𝑦   𝑒,𝑂,𝑓   𝑃,𝑒,𝑓,𝑦   𝑅,𝑒,𝑓   𝑒,𝑉,𝑓   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝐷(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑅(𝑦)   𝑆(𝑦,𝑒,𝑓)   (𝑦)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑂(𝑦)   𝑉(𝑦)   𝑊(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p2
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p2.13 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Field)
2 isfld 20625 . . . . . . . . . . . . . 14 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
31, 2sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
43simprd 495 . . . . . . . . . . . 12 (𝜑𝐾 ∈ CRing)
5 aks6d1c1p2.6 . . . . . . . . . . . . 13 𝑉 = (mulGrp‘𝐾)
65crngmgp 20126 . . . . . . . . . . . 12 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
74, 6syl 17 . . . . . . . . . . 11 (𝜑𝑉 ∈ CMnd)
8 aks6d1c1p2.15 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
98nnnn0d 12445 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
10 aks6d1c1p2.7 . . . . . . . . . . 11 = (.g𝑉)
117, 9, 10isprimroot 42076 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
1211biimpd 229 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
1312imp 406 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙)))
1413simp1d 1142 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
15 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
165, 15mgpbas 20030 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝑉)
1716eqcomi 2738 . . . . . . . . . 10 (Base‘𝑉) = (Base‘𝐾)
1817a1i 11 . . . . . . . . 9 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
1918adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
2019eleq2d 2814 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ↔ 𝑦 ∈ (Base‘𝐾)))
2114, 20mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
2221ex 412 . . . . 5 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → 𝑦 ∈ (Base‘𝐾)))
23 aks6d1c1p2.18 . . . . . . . . . . . . . 14 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
2423a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
2524fveq2d 6826 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑂𝐹) = (𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
2625fveq1d 6824 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘𝑦) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
2726oveq2d 7365 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = (𝑃 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
28 aks6d1c1p2.11 . . . . . . . . . . . . 13 𝑂 = (eval1𝐾)
29 aks6d1c1p2.2 . . . . . . . . . . . . 13 𝑆 = (Poly1𝐾)
30 aks6d1c1p2.3 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
314adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ CRing)
32 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
33 crngring 20130 . . . . . . . . . . . . . . 15 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
34 aks6d1c1p2.4 . . . . . . . . . . . . . . . 16 𝑋 = (var1𝐾)
3534, 29, 30vr1cl 22100 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → 𝑋𝐵)
3631, 33, 353syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑋𝐵)
3728, 34, 15, 29, 30, 31, 32evl1vard 22222 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
3837simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝑋)‘𝑦) = 𝑦)
3936, 38jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
404, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Ring)
414crngringd 20131 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ Ring)
42 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4342zrhrhm 21418 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
44 rhmghm 20369 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
45 zringbas 21360 . . . . . . . . . . . . . . . . . . 19 ℤ = (Base‘ℤring)
4645, 15ghmf 19099 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4741, 43, 44, 464syl 19 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
48 aks6d1c1p2.19 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℤ)
4947, 48ffvelcdmd 7019 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
50 aks6d1c1p2.8 . . . . . . . . . . . . . . . . 17 𝐶 = (algSc‘𝑆)
5129, 50, 15, 30ply1sclcl 22170 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5240, 49, 51syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5352adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5449adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
5528, 29, 15, 50, 30, 31, 54, 32evl1scad 22220 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
5655simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴))
5753, 56jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
58 aks6d1c1p2.12 . . . . . . . . . . . . 13 + = (+g𝑆)
59 eqid 2729 . . . . . . . . . . . . 13 (+g𝐾) = (+g𝐾)
6028, 29, 15, 30, 31, 32, 39, 57, 58, 59evl1addd 22226 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6160simprd 495 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
6261oveq2d 7365 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6327, 62eqtrd 2764 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6425fveq1d 6824 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)))
65 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝑉) = (Base‘𝑉)
665ringmgp 20124 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Ring → 𝑉 ∈ Mnd)
6731, 33, 663syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑉 ∈ Mnd)
68 aks6d1c1p2.14 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℙ)
69 prmnn 16585 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
7068, 69syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℕ)
7170nnnn0d 12445 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℕ0)
7271adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑃 ∈ ℕ0)
7332, 16eleqtrdi 2838 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝑉))
7465, 10, 67, 72, 73mulgnn0cld 18974 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 𝑦) ∈ (Base‘𝑉))
7574, 17eleqtrdi 2838 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 𝑦) ∈ (Base‘𝐾))
7628, 34, 15, 29, 30, 31, 75evl1vard 22222 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑃 𝑦)) = (𝑃 𝑦)))
7728, 29, 15, 50, 30, 31, 54, 75evl1scad 22220 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
7877simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))
7953, 78jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
8028, 29, 15, 30, 31, 75, 76, 79, 58, 59evl1addd 22226 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
8180simprd 495 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8264, 81eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
83 aks6d1c1p2.9 . . . . . . . . . . . . . . . . . 18 𝐷 = (.g𝑊)
84 aks6d1c1p2.5 . . . . . . . . . . . . . . . . . . 19 𝑊 = (mulGrp‘𝑆)
8584fveq2i 6825 . . . . . . . . . . . . . . . . . 18 (.g𝑊) = (.g‘(mulGrp‘𝑆))
8683, 85eqtri 2752 . . . . . . . . . . . . . . . . 17 𝐷 = (.g‘(mulGrp‘𝑆))
875fveq2i 6825 . . . . . . . . . . . . . . . . . 18 (.g𝑉) = (.g‘(mulGrp‘𝐾))
8810, 87eqtri 2752 . . . . . . . . . . . . . . . . 17 = (.g‘(mulGrp‘𝐾))
8928, 29, 15, 30, 31, 32, 37, 86, 88, 72evl1expd 22230 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷𝑋))‘𝑦) = (𝑃 𝑦)))
90 eqid 2729 . . . . . . . . . . . . . . . 16 (+g𝑆) = (+g𝑆)
9128, 29, 15, 30, 31, 32, 89, 57, 90, 59evl1addd 22226 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9291simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
93 eqidd 2730 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
9492, 93eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
9594eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
96 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝐶‘((ℤRHom‘𝐾)‘𝐴)) = (𝐶‘((ℤRHom‘𝐾)‘𝐴))
97 aks6d1c1p2.10 . . . . . . . . . . . . . . . . 17 𝑃 = (chr‘𝐾)
9829, 34, 90, 84, 83, 50, 96, 97, 4, 68, 48ply1fermltlchr 22197 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) = ((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))
9998fveq2d 6826 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))) = (𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
10099fveq1d 6824 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
101100eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦))
102101adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦))
10328, 29, 15, 30, 31, 32, 37, 55, 90, 59evl1addd 22226 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10428, 29, 15, 30, 31, 32, 103, 86, 88, 72evl1expd 22230 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
105104simprd 495 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10695, 102, 1053eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10782, 106eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
108107eqcomd 2735 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑂𝐹)‘(𝑃 𝑦)))
10963, 108eqtrd 2764 . . . . . . . 8 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
110109adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
111110ex 412 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
112111ex 412 . . . . 5 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))))
11322, 112mpdd 43 . . . 4 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
114113imp 406 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
115114ralrimiva 3121 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
116 aks6d1c1p2.1 . . 3 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
11729ply1crng 22081 . . . . . . . . 9 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
1184, 117syl 17 . . . . . . . 8 (𝜑𝑆 ∈ CRing)
119 crngring 20130 . . . . . . . 8 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
120118, 119syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
121120ringgrpd 20127 . . . . . 6 (𝜑𝑆 ∈ Grp)
12241, 35syl 17 . . . . . 6 (𝜑𝑋𝐵)
123121, 122, 523jca 1128 . . . . 5 (𝜑 → (𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵))
12430, 58grpcl 18820 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
125123, 124syl 17 . . . 4 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
12623a1i 11 . . . . 5 (𝜑𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
127126eleq1d 2813 . . . 4 (𝜑 → (𝐹𝐵 ↔ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵))
128125, 127mpbird 257 . . 3 (𝜑𝐹𝐵)
129116, 128, 70aks6d1c1p1 42090 . 2 (𝜑 → (𝑃 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
130115, 129mpbird 257 1 (𝜑𝑃 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  {copab 5154  wf 6478  cfv 6482  (class class class)co 7349  1c1 11010  cn 12128  0cn0 12384  cz 12471  cdvds 16163   gcd cgcd 16405  cprime 16582  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18608  Grpcgrp 18812  .gcmg 18946   GrpHom cghm 19091  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  DivRingcdr 20614  Fieldcfield 20615  ringczring 21353  ℤRHomczrh 21406  chrcchr 21408  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  eval1ce1 22199   PrimRoots cprimroots 42074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-od 19407  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-chr 21412  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evl1 22201  df-primroots 42075
This theorem is referenced by:  aks6d1c1  42099
  Copyright terms: Public domain W3C validator