Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p2 Structured version   Visualization version   GIF version

Theorem aks6d1c1p2 41612
Description: 𝑃 and linear factors are introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p2.2 𝑆 = (Poly1𝐾)
aks6d1c1p2.3 𝐵 = (Base‘𝑆)
aks6d1c1p2.4 𝑋 = (var1𝐾)
aks6d1c1p2.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p2.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p2.7 = (.g𝑉)
aks6d1c1p2.8 𝐶 = (algSc‘𝑆)
aks6d1c1p2.9 𝐷 = (.g𝑊)
aks6d1c1p2.10 𝑃 = (chr‘𝐾)
aks6d1c1p2.11 𝑂 = (eval1𝐾)
aks6d1c1p2.12 + = (+g𝑆)
aks6d1c1p2.13 (𝜑𝐾 ∈ Field)
aks6d1c1p2.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p2.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p2.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p2.17 (𝜑𝑃𝑁)
aks6d1c1p2.18 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
aks6d1c1p2.19 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
aks6d1c1p2 (𝜑𝑃 𝐹)
Distinct variable groups:   ,𝑒,𝑓   𝐵,𝑒,𝑓   𝑒,𝐹,𝑓,𝑦   𝑒,𝑂,𝑓   𝑃,𝑒,𝑓,𝑦   𝑅,𝑒,𝑓   𝑒,𝑉,𝑓   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝐷(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑅(𝑦)   𝑆(𝑦,𝑒,𝑓)   (𝑦)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑂(𝑦)   𝑉(𝑦)   𝑊(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p2
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p2.13 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Field)
2 isfld 20642 . . . . . . . . . . . . . 14 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
31, 2sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
43simprd 494 . . . . . . . . . . . 12 (𝜑𝐾 ∈ CRing)
5 aks6d1c1p2.6 . . . . . . . . . . . . 13 𝑉 = (mulGrp‘𝐾)
65crngmgp 20188 . . . . . . . . . . . 12 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
74, 6syl 17 . . . . . . . . . . 11 (𝜑𝑉 ∈ CMnd)
8 aks6d1c1p2.15 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
98nnnn0d 12570 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
10 aks6d1c1p2.7 . . . . . . . . . . 11 = (.g𝑉)
117, 9, 10isprimroot 41596 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
1211biimpd 228 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
1312imp 405 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙)))
1413simp1d 1139 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
15 eqid 2728 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
165, 15mgpbas 20087 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝑉)
1716eqcomi 2737 . . . . . . . . . 10 (Base‘𝑉) = (Base‘𝐾)
1817a1i 11 . . . . . . . . 9 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
1918adantr 479 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
2019eleq2d 2815 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ↔ 𝑦 ∈ (Base‘𝐾)))
2114, 20mpbid 231 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
2221ex 411 . . . . 5 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → 𝑦 ∈ (Base‘𝐾)))
23 aks6d1c1p2.18 . . . . . . . . . . . . . 14 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
2423a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
2524fveq2d 6906 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑂𝐹) = (𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
2625fveq1d 6904 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘𝑦) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
2726oveq2d 7442 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = (𝑃 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
28 aks6d1c1p2.11 . . . . . . . . . . . . 13 𝑂 = (eval1𝐾)
29 aks6d1c1p2.2 . . . . . . . . . . . . 13 𝑆 = (Poly1𝐾)
30 aks6d1c1p2.3 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
314adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ CRing)
32 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
33 crngring 20192 . . . . . . . . . . . . . . 15 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
34 aks6d1c1p2.4 . . . . . . . . . . . . . . . 16 𝑋 = (var1𝐾)
3534, 29, 30vr1cl 22143 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → 𝑋𝐵)
3631, 33, 353syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑋𝐵)
3728, 34, 15, 29, 30, 31, 32evl1vard 22263 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
3837simprd 494 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝑋)‘𝑦) = 𝑦)
3936, 38jca 510 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
404, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Ring)
414crngringd 20193 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ Ring)
42 eqid 2728 . . . . . . . . . . . . . . . . . . . . 21 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4342zrhrhm 21444 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
4441, 43syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
45 rhmghm 20430 . . . . . . . . . . . . . . . . . . 19 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
47 zringbas 21386 . . . . . . . . . . . . . . . . . . 19 ℤ = (Base‘ℤring)
4847, 15ghmf 19181 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4946, 48syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
50 aks6d1c1p2.19 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℤ)
5149, 50ffvelcdmd 7100 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
52 aks6d1c1p2.8 . . . . . . . . . . . . . . . . 17 𝐶 = (algSc‘𝑆)
5329, 52, 15, 30ply1sclcl 22212 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5440, 51, 53syl2anc 582 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5554adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5651adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
5728, 29, 15, 52, 30, 31, 56, 32evl1scad 22261 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
5857simprd 494 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴))
5955, 58jca 510 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
60 aks6d1c1p2.12 . . . . . . . . . . . . 13 + = (+g𝑆)
61 eqid 2728 . . . . . . . . . . . . 13 (+g𝐾) = (+g𝐾)
6228, 29, 15, 30, 31, 32, 39, 59, 60, 61evl1addd 22267 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6362simprd 494 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
6463oveq2d 7442 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6527, 64eqtrd 2768 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6625fveq1d 6904 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)))
67 eqid 2728 . . . . . . . . . . . . . . . 16 (Base‘𝑉) = (Base‘𝑉)
685ringmgp 20186 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Ring → 𝑉 ∈ Mnd)
6931, 33, 683syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑉 ∈ Mnd)
70 aks6d1c1p2.14 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℙ)
71 prmnn 16652 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
7270, 71syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℕ)
7372nnnn0d 12570 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℕ0)
7473adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑃 ∈ ℕ0)
7532, 16eleqtrdi 2839 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝑉))
7667, 10, 69, 74, 75mulgnn0cld 19057 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 𝑦) ∈ (Base‘𝑉))
7776, 17eleqtrdi 2839 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 𝑦) ∈ (Base‘𝐾))
7828, 34, 15, 29, 30, 31, 77evl1vard 22263 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑃 𝑦)) = (𝑃 𝑦)))
7928, 29, 15, 52, 30, 31, 56, 77evl1scad 22261 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
8079simprd 494 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))
8155, 80jca 510 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
8228, 29, 15, 30, 31, 77, 78, 81, 60, 61evl1addd 22267 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
8382simprd 494 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8466, 83eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
85 aks6d1c1p2.9 . . . . . . . . . . . . . . . . . 18 𝐷 = (.g𝑊)
86 aks6d1c1p2.5 . . . . . . . . . . . . . . . . . . 19 𝑊 = (mulGrp‘𝑆)
8786fveq2i 6905 . . . . . . . . . . . . . . . . . 18 (.g𝑊) = (.g‘(mulGrp‘𝑆))
8885, 87eqtri 2756 . . . . . . . . . . . . . . . . 17 𝐷 = (.g‘(mulGrp‘𝑆))
895fveq2i 6905 . . . . . . . . . . . . . . . . . 18 (.g𝑉) = (.g‘(mulGrp‘𝐾))
9010, 89eqtri 2756 . . . . . . . . . . . . . . . . 17 = (.g‘(mulGrp‘𝐾))
9128, 29, 15, 30, 31, 32, 37, 88, 90, 74evl1expd 22271 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷𝑋))‘𝑦) = (𝑃 𝑦)))
92 eqid 2728 . . . . . . . . . . . . . . . 16 (+g𝑆) = (+g𝑆)
9328, 29, 15, 30, 31, 32, 91, 59, 92, 61evl1addd 22267 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9493simprd 494 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
95 eqidd 2729 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
9694, 95eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
9796eqcomd 2734 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
98 eqid 2728 . . . . . . . . . . . . . . . . 17 (𝐶‘((ℤRHom‘𝐾)‘𝐴)) = (𝐶‘((ℤRHom‘𝐾)‘𝐴))
99 aks6d1c1p2.10 . . . . . . . . . . . . . . . . 17 𝑃 = (chr‘𝐾)
10029, 34, 92, 86, 85, 52, 98, 99, 4, 70, 50ply1fermltlchr 22238 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) = ((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))
101100fveq2d 6906 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))) = (𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
102101fveq1d 6904 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
103102eqcomd 2734 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦))
104103adantr 479 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦))
10528, 29, 15, 30, 31, 32, 37, 57, 92, 61evl1addd 22267 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10628, 29, 15, 30, 31, 32, 105, 88, 90, 74evl1expd 22271 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
107106simprd 494 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10897, 104, 1073eqtrd 2772 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10984, 108eqtrd 2768 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
110109eqcomd 2734 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑂𝐹)‘(𝑃 𝑦)))
11165, 110eqtrd 2768 . . . . . . . 8 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
112111adantlr 713 . . . . . . 7 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
113112ex 411 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
114113ex 411 . . . . 5 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))))
11522, 114mpdd 43 . . . 4 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
116115imp 405 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
117116ralrimiva 3143 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
118 aks6d1c1p2.1 . . 3 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
11929ply1crng 22124 . . . . . . . . 9 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
1204, 119syl 17 . . . . . . . 8 (𝜑𝑆 ∈ CRing)
121 crngring 20192 . . . . . . . 8 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
122120, 121syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
123122ringgrpd 20189 . . . . . 6 (𝜑𝑆 ∈ Grp)
12441, 35syl 17 . . . . . 6 (𝜑𝑋𝐵)
125123, 124, 543jca 1125 . . . . 5 (𝜑 → (𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵))
12630, 60grpcl 18905 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
127125, 126syl 17 . . . 4 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
12823a1i 11 . . . . 5 (𝜑𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
129128eleq1d 2814 . . . 4 (𝜑 → (𝐹𝐵 ↔ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵))
130127, 129mpbird 256 . . 3 (𝜑𝐹𝐵)
131118, 130, 72aks6d1c1p1 41610 . 2 (𝜑 → (𝑃 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
132117, 131mpbird 256 1 (𝜑𝑃 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058   class class class wbr 5152  {copab 5214  wf 6549  cfv 6553  (class class class)co 7426  1c1 11147  cn 12250  0cn0 12510  cz 12596  cdvds 16238   gcd cgcd 16476  cprime 16649  Basecbs 17187  +gcplusg 17240  0gc0g 17428  Mndcmnd 18701  Grpcgrp 18897  .gcmg 19030   GrpHom cghm 19174  CMndccmn 19742  mulGrpcmgp 20081  Ringcrg 20180  CRingccrg 20181   RingHom crh 20415  DivRingcdr 20631  Fieldcfield 20632  ringczring 21379  ℤRHomczrh 21432  chrcchr 21434  algSccascl 21793  var1cv1 22102  Poly1cpl1 22103  eval1ce1 22240   PrimRoots cprimroots 41594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-ofr 7692  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-xnn0 12583  df-z 12597  df-dec 12716  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-dvds 16239  df-gcd 16477  df-prm 16650  df-phi 16742  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-0g 17430  df-gsum 17431  df-prds 17436  df-pws 17438  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-submnd 18748  df-grp 18900  df-minusg 18901  df-sbg 18902  df-mulg 19031  df-subg 19085  df-ghm 19175  df-cntz 19275  df-od 19490  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-srg 20134  df-ring 20182  df-cring 20183  df-oppr 20280  df-dvdsr 20303  df-unit 20304  df-invr 20334  df-dvr 20347  df-rhm 20418  df-subrng 20490  df-subrg 20515  df-drng 20633  df-field 20634  df-lmod 20752  df-lss 20823  df-lsp 20863  df-cnfld 21287  df-zring 21380  df-zrh 21436  df-chr 21438  df-assa 21794  df-asp 21795  df-ascl 21796  df-psr 21849  df-mvr 21850  df-mpl 21851  df-opsr 21853  df-evls 22025  df-evl 22026  df-psr1 22106  df-vr1 22107  df-ply1 22108  df-coe1 22109  df-evl1 22242  df-primroots 41595
This theorem is referenced by:  aks6d1c1  41619
  Copyright terms: Public domain W3C validator