Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p2 Structured version   Visualization version   GIF version

Theorem aks6d1c1p2 42069
Description: 𝑃 and linear factors are introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p2.2 𝑆 = (Poly1𝐾)
aks6d1c1p2.3 𝐵 = (Base‘𝑆)
aks6d1c1p2.4 𝑋 = (var1𝐾)
aks6d1c1p2.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p2.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p2.7 = (.g𝑉)
aks6d1c1p2.8 𝐶 = (algSc‘𝑆)
aks6d1c1p2.9 𝐷 = (.g𝑊)
aks6d1c1p2.10 𝑃 = (chr‘𝐾)
aks6d1c1p2.11 𝑂 = (eval1𝐾)
aks6d1c1p2.12 + = (+g𝑆)
aks6d1c1p2.13 (𝜑𝐾 ∈ Field)
aks6d1c1p2.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p2.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p2.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p2.17 (𝜑𝑃𝑁)
aks6d1c1p2.18 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
aks6d1c1p2.19 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
aks6d1c1p2 (𝜑𝑃 𝐹)
Distinct variable groups:   ,𝑒,𝑓   𝐵,𝑒,𝑓   𝑒,𝐹,𝑓,𝑦   𝑒,𝑂,𝑓   𝑃,𝑒,𝑓,𝑦   𝑅,𝑒,𝑓   𝑒,𝑉,𝑓   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝐷(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑅(𝑦)   𝑆(𝑦,𝑒,𝑓)   (𝑦)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑂(𝑦)   𝑉(𝑦)   𝑊(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p2
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p2.13 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Field)
2 isfld 20708 . . . . . . . . . . . . . 14 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
31, 2sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
43simprd 495 . . . . . . . . . . . 12 (𝜑𝐾 ∈ CRing)
5 aks6d1c1p2.6 . . . . . . . . . . . . 13 𝑉 = (mulGrp‘𝐾)
65crngmgp 20206 . . . . . . . . . . . 12 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
74, 6syl 17 . . . . . . . . . . 11 (𝜑𝑉 ∈ CMnd)
8 aks6d1c1p2.15 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
98nnnn0d 12570 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
10 aks6d1c1p2.7 . . . . . . . . . . 11 = (.g𝑉)
117, 9, 10isprimroot 42053 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
1211biimpd 229 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
1312imp 406 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙)))
1413simp1d 1142 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
15 eqid 2734 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
165, 15mgpbas 20110 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝑉)
1716eqcomi 2743 . . . . . . . . . 10 (Base‘𝑉) = (Base‘𝐾)
1817a1i 11 . . . . . . . . 9 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
1918adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
2019eleq2d 2819 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ↔ 𝑦 ∈ (Base‘𝐾)))
2114, 20mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
2221ex 412 . . . . 5 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → 𝑦 ∈ (Base‘𝐾)))
23 aks6d1c1p2.18 . . . . . . . . . . . . . 14 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
2423a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
2524fveq2d 6890 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑂𝐹) = (𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
2625fveq1d 6888 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘𝑦) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
2726oveq2d 7429 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = (𝑃 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
28 aks6d1c1p2.11 . . . . . . . . . . . . 13 𝑂 = (eval1𝐾)
29 aks6d1c1p2.2 . . . . . . . . . . . . 13 𝑆 = (Poly1𝐾)
30 aks6d1c1p2.3 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
314adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ CRing)
32 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
33 crngring 20210 . . . . . . . . . . . . . . 15 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
34 aks6d1c1p2.4 . . . . . . . . . . . . . . . 16 𝑋 = (var1𝐾)
3534, 29, 30vr1cl 22167 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → 𝑋𝐵)
3631, 33, 353syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑋𝐵)
3728, 34, 15, 29, 30, 31, 32evl1vard 22289 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
3837simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝑋)‘𝑦) = 𝑦)
3936, 38jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
404, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Ring)
414crngringd 20211 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ Ring)
42 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4342zrhrhm 21484 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
44 rhmghm 20452 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
45 zringbas 21426 . . . . . . . . . . . . . . . . . . 19 ℤ = (Base‘ℤring)
4645, 15ghmf 19207 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4741, 43, 44, 464syl 19 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
48 aks6d1c1p2.19 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℤ)
4947, 48ffvelcdmd 7085 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
50 aks6d1c1p2.8 . . . . . . . . . . . . . . . . 17 𝐶 = (algSc‘𝑆)
5129, 50, 15, 30ply1sclcl 22237 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5240, 49, 51syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5352adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5449adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
5528, 29, 15, 50, 30, 31, 54, 32evl1scad 22287 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
5655simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴))
5753, 56jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
58 aks6d1c1p2.12 . . . . . . . . . . . . 13 + = (+g𝑆)
59 eqid 2734 . . . . . . . . . . . . 13 (+g𝐾) = (+g𝐾)
6028, 29, 15, 30, 31, 32, 39, 57, 58, 59evl1addd 22293 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6160simprd 495 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
6261oveq2d 7429 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6327, 62eqtrd 2769 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6425fveq1d 6888 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)))
65 eqid 2734 . . . . . . . . . . . . . . . 16 (Base‘𝑉) = (Base‘𝑉)
665ringmgp 20204 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Ring → 𝑉 ∈ Mnd)
6731, 33, 663syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑉 ∈ Mnd)
68 aks6d1c1p2.14 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℙ)
69 prmnn 16693 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
7068, 69syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℕ)
7170nnnn0d 12570 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℕ0)
7271adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑃 ∈ ℕ0)
7332, 16eleqtrdi 2843 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝑉))
7465, 10, 67, 72, 73mulgnn0cld 19082 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 𝑦) ∈ (Base‘𝑉))
7574, 17eleqtrdi 2843 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 𝑦) ∈ (Base‘𝐾))
7628, 34, 15, 29, 30, 31, 75evl1vard 22289 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑃 𝑦)) = (𝑃 𝑦)))
7728, 29, 15, 50, 30, 31, 54, 75evl1scad 22287 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
7877simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))
7953, 78jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
8028, 29, 15, 30, 31, 75, 76, 79, 58, 59evl1addd 22293 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
8180simprd 495 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8264, 81eqtrd 2769 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
83 aks6d1c1p2.9 . . . . . . . . . . . . . . . . . 18 𝐷 = (.g𝑊)
84 aks6d1c1p2.5 . . . . . . . . . . . . . . . . . . 19 𝑊 = (mulGrp‘𝑆)
8584fveq2i 6889 . . . . . . . . . . . . . . . . . 18 (.g𝑊) = (.g‘(mulGrp‘𝑆))
8683, 85eqtri 2757 . . . . . . . . . . . . . . . . 17 𝐷 = (.g‘(mulGrp‘𝑆))
875fveq2i 6889 . . . . . . . . . . . . . . . . . 18 (.g𝑉) = (.g‘(mulGrp‘𝐾))
8810, 87eqtri 2757 . . . . . . . . . . . . . . . . 17 = (.g‘(mulGrp‘𝐾))
8928, 29, 15, 30, 31, 32, 37, 86, 88, 72evl1expd 22297 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷𝑋))‘𝑦) = (𝑃 𝑦)))
90 eqid 2734 . . . . . . . . . . . . . . . 16 (+g𝑆) = (+g𝑆)
9128, 29, 15, 30, 31, 32, 89, 57, 90, 59evl1addd 22293 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9291simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
93 eqidd 2735 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
9492, 93eqtrd 2769 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
9594eqcomd 2740 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
96 eqid 2734 . . . . . . . . . . . . . . . . 17 (𝐶‘((ℤRHom‘𝐾)‘𝐴)) = (𝐶‘((ℤRHom‘𝐾)‘𝐴))
97 aks6d1c1p2.10 . . . . . . . . . . . . . . . . 17 𝑃 = (chr‘𝐾)
9829, 34, 90, 84, 83, 50, 96, 97, 4, 68, 48ply1fermltlchr 22264 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) = ((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))
9998fveq2d 6890 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))) = (𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
10099fveq1d 6888 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
101100eqcomd 2740 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦))
102101adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦))
10328, 29, 15, 30, 31, 32, 37, 55, 90, 59evl1addd 22293 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10428, 29, 15, 30, 31, 32, 103, 86, 88, 72evl1expd 22297 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
105104simprd 495 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10695, 102, 1053eqtrd 2773 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10782, 106eqtrd 2769 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
108107eqcomd 2740 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑂𝐹)‘(𝑃 𝑦)))
10963, 108eqtrd 2769 . . . . . . . 8 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
110109adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
111110ex 412 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
112111ex 412 . . . . 5 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))))
11322, 112mpdd 43 . . . 4 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
114113imp 406 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
115114ralrimiva 3133 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
116 aks6d1c1p2.1 . . 3 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
11729ply1crng 22148 . . . . . . . . 9 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
1184, 117syl 17 . . . . . . . 8 (𝜑𝑆 ∈ CRing)
119 crngring 20210 . . . . . . . 8 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
120118, 119syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
121120ringgrpd 20207 . . . . . 6 (𝜑𝑆 ∈ Grp)
12241, 35syl 17 . . . . . 6 (𝜑𝑋𝐵)
123121, 122, 523jca 1128 . . . . 5 (𝜑 → (𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵))
12430, 58grpcl 18928 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
125123, 124syl 17 . . . 4 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
12623a1i 11 . . . . 5 (𝜑𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
127126eleq1d 2818 . . . 4 (𝜑 → (𝐹𝐵 ↔ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵))
128125, 127mpbird 257 . . 3 (𝜑𝐹𝐵)
129116, 128, 70aks6d1c1p1 42067 . 2 (𝜑 → (𝑃 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
130115, 129mpbird 257 1 (𝜑𝑃 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050   class class class wbr 5123  {copab 5185  wf 6537  cfv 6541  (class class class)co 7413  1c1 11138  cn 12248  0cn0 12509  cz 12596  cdvds 16272   gcd cgcd 16513  cprime 16690  Basecbs 17229  +gcplusg 17273  0gc0g 17455  Mndcmnd 18716  Grpcgrp 18920  .gcmg 19054   GrpHom cghm 19199  CMndccmn 19766  mulGrpcmgp 20105  Ringcrg 20198  CRingccrg 20199   RingHom crh 20437  DivRingcdr 20697  Fieldcfield 20698  ringczring 21419  ℤRHomczrh 21472  chrcchr 21474  algSccascl 21826  var1cv1 22125  Poly1cpl1 22126  eval1ce1 22266   PrimRoots cprimroots 42051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14295  df-bc 14324  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-dvds 16273  df-gcd 16514  df-prm 16691  df-phi 16785  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-0g 17457  df-gsum 17458  df-prds 17463  df-pws 17465  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-ghm 19200  df-cntz 19304  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-rhm 20440  df-subrng 20514  df-subrg 20538  df-drng 20699  df-field 20700  df-lmod 20828  df-lss 20898  df-lsp 20938  df-cnfld 21327  df-zring 21420  df-zrh 21476  df-chr 21478  df-assa 21827  df-asp 21828  df-ascl 21829  df-psr 21883  df-mvr 21884  df-mpl 21885  df-opsr 21887  df-evls 22046  df-evl 22047  df-psr1 22129  df-vr1 22130  df-ply1 22131  df-coe1 22132  df-evl1 22268  df-primroots 42052
This theorem is referenced by:  aks6d1c1  42076
  Copyright terms: Public domain W3C validator