Step | Hyp | Ref
| Expression |
1 | | aks6d1c1p2.13 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ Field) |
2 | | isfld 20642 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
3 | 1, 2 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
4 | 3 | simprd 494 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ CRing) |
5 | | aks6d1c1p2.6 |
. . . . . . . . . . . . 13
⊢ 𝑉 = (mulGrp‘𝐾) |
6 | 5 | crngmgp 20188 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ CRing → 𝑉 ∈ CMnd) |
7 | 4, 6 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ∈ CMnd) |
8 | | aks6d1c1p2.15 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ ℕ) |
9 | 8 | nnnn0d 12570 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
10 | | aks6d1c1p2.7 |
. . . . . . . . . . 11
⊢ ↑ =
(.g‘𝑉) |
11 | 7, 9, 10 | isprimroot 41596 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙)))) |
12 | 11 | biimpd 228 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙)))) |
13 | 12 | imp 405 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙))) |
14 | 13 | simp1d 1139 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉)) |
15 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝐾) |
16 | 5, 15 | mgpbas 20087 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝑉) |
17 | 16 | eqcomi 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑉) =
(Base‘𝐾) |
18 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝑉) = (Base‘𝐾)) |
19 | 18 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾)) |
20 | 19 | eleq2d 2815 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ↔ 𝑦 ∈ (Base‘𝐾))) |
21 | 14, 20 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾)) |
22 | 21 | ex 411 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → 𝑦 ∈ (Base‘𝐾))) |
23 | | aks6d1c1p2.18 |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) |
24 | 23 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))) |
25 | 24 | fveq2d 6906 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑂‘𝐹) = (𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))) |
26 | 25 | fveq1d 6904 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘𝐹)‘𝑦) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) |
27 | 26 | oveq2d 7442 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = (𝑃 ↑ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))) |
28 | | aks6d1c1p2.11 |
. . . . . . . . . . . . 13
⊢ 𝑂 = (eval1‘𝐾) |
29 | | aks6d1c1p2.2 |
. . . . . . . . . . . . 13
⊢ 𝑆 = (Poly1‘𝐾) |
30 | | aks6d1c1p2.3 |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑆) |
31 | 4 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ CRing) |
32 | | simpr 483 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾)) |
33 | | crngring 20192 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ CRing → 𝐾 ∈ Ring) |
34 | | aks6d1c1p2.4 |
. . . . . . . . . . . . . . . 16
⊢ 𝑋 = (var1‘𝐾) |
35 | 34, 29, 30 | vr1cl 22143 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ Ring → 𝑋 ∈ 𝐵) |
36 | 31, 33, 35 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑋 ∈ 𝐵) |
37 | 28, 34, 15, 29, 30, 31, 32 | evl1vard 22263 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑋)‘𝑦) = 𝑦)) |
38 | 37 | simprd 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘𝑋)‘𝑦) = 𝑦) |
39 | 36, 38 | jca 510 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑋)‘𝑦) = 𝑦)) |
40 | 4, 33 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ Ring) |
41 | 4 | crngringd 20193 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ Ring) |
42 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℤRHom‘𝐾) = (ℤRHom‘𝐾) |
43 | 42 | zrhrhm 21444 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾)
∈ (ℤring RingHom 𝐾)) |
44 | 41, 43 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring
RingHom 𝐾)) |
45 | | rhmghm 20430 |
. . . . . . . . . . . . . . . . . . 19
⊢
((ℤRHom‘𝐾) ∈ (ℤring RingHom
𝐾) →
(ℤRHom‘𝐾)
∈ (ℤring GrpHom 𝐾)) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring
GrpHom 𝐾)) |
47 | | zringbas 21386 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℤ =
(Base‘ℤring) |
48 | 47, 15 | ghmf 19181 |
. . . . . . . . . . . . . . . . . 18
⊢
((ℤRHom‘𝐾) ∈ (ℤring GrpHom
𝐾) →
(ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
49 | 46, 48 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
50 | | aks6d1c1p2.19 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ ℤ) |
51 | 49, 50 | ffvelcdmd 7100 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) |
52 | | aks6d1c1p2.8 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐶 = (algSc‘𝑆) |
53 | 29, 52, 15, 30 | ply1sclcl 22212 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Ring ∧
((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) |
54 | 40, 51, 53 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) |
55 | 54 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) |
56 | 51 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) |
57 | 28, 29, 15, 52, 30, 31, 56, 32 | evl1scad 22261 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴))) |
58 | 57 | simprd 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)) |
59 | 55, 58 | jca 510 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴))) |
60 | | aks6d1c1p2.12 |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝑆) |
61 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(+g‘𝐾) = (+g‘𝐾) |
62 | 28, 29, 15, 30, 31, 32, 39, 59, 60, 61 | evl1addd 22267 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
63 | 62 | simprd 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
64 | 63 | oveq2d 7442 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ↑ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = (𝑃 ↑ (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
65 | 27, 64 | eqtrd 2768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = (𝑃 ↑ (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
66 | 25 | fveq1d 6904 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 ↑ 𝑦))) |
67 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑉) =
(Base‘𝑉) |
68 | 5 | ringmgp 20186 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Ring → 𝑉 ∈ Mnd) |
69 | 31, 33, 68 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑉 ∈ Mnd) |
70 | | aks6d1c1p2.14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ ℙ) |
71 | | prmnn 16652 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃 ∈ ℕ) |
73 | 72 | nnnn0d 12570 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
74 | 73 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑃 ∈
ℕ0) |
75 | 32, 16 | eleqtrdi 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝑉)) |
76 | 67, 10, 69, 74, 75 | mulgnn0cld 19057 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ↑ 𝑦) ∈ (Base‘𝑉)) |
77 | 76, 17 | eleqtrdi 2839 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ↑ 𝑦) ∈ (Base‘𝐾)) |
78 | 28, 34, 15, 29, 30, 31, 77 | evl1vard 22263 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑋)‘(𝑃 ↑ 𝑦)) = (𝑃 ↑ 𝑦))) |
79 | 28, 29, 15, 52, 30, 31, 56, 77 | evl1scad 22261 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 ↑ 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))) |
80 | 79 | simprd 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 ↑ 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)) |
81 | 55, 80 | jca 510 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 ↑ 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))) |
82 | 28, 29, 15, 30, 31, 77, 78, 81, 60, 61 | evl1addd 22267 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 ↑ 𝑦)) = ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
83 | 82 | simprd 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 ↑ 𝑦)) = ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
84 | 66, 83 | eqtrd 2768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦)) = ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
85 | | aks6d1c1p2.9 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐷 = (.g‘𝑊) |
86 | | aks6d1c1p2.5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑊 = (mulGrp‘𝑆) |
87 | 86 | fveq2i 6905 |
. . . . . . . . . . . . . . . . . 18
⊢
(.g‘𝑊) = (.g‘(mulGrp‘𝑆)) |
88 | 85, 87 | eqtri 2756 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐷 =
(.g‘(mulGrp‘𝑆)) |
89 | 5 | fveq2i 6905 |
. . . . . . . . . . . . . . . . . 18
⊢
(.g‘𝑉) = (.g‘(mulGrp‘𝐾)) |
90 | 10, 89 | eqtri 2756 |
. . . . . . . . . . . . . . . . 17
⊢ ↑ =
(.g‘(mulGrp‘𝐾)) |
91 | 28, 29, 15, 30, 31, 32, 37, 88, 90, 74 | evl1expd 22271 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷𝑋))‘𝑦) = (𝑃 ↑ 𝑦))) |
92 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝑆) = (+g‘𝑆) |
93 | 28, 29, 15, 30, 31, 32, 91, 59, 92, 61 | evl1addd 22267 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
94 | 93 | simprd 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
95 | | eqidd 2729 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
96 | 94, 95 | eqtrd 2768 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
97 | 96 | eqcomd 2734 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑂‘((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) |
98 | | eqid 2728 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) = (𝐶‘((ℤRHom‘𝐾)‘𝐴)) |
99 | | aks6d1c1p2.10 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑃 = (chr‘𝐾) |
100 | 29, 34, 92, 86, 85, 52, 98, 99, 4, 70, 50 | ply1fermltlchr 22238 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃𝐷(𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) = ((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) |
101 | 100 | fveq2d 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑂‘(𝑃𝐷(𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))) = (𝑂‘((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))) |
102 | 101 | fveq1d 6904 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑂‘(𝑃𝐷(𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = ((𝑂‘((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) |
103 | 102 | eqcomd 2734 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑂‘((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦)) |
104 | 103 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦)) |
105 | 28, 29, 15, 30, 31, 32, 37, 57, 92, 61 | evl1addd 22267 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
106 | 28, 29, 15, 30, 31, 32, 105, 88, 90, 74 | evl1expd 22271 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷(𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷(𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 ↑ (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))))) |
107 | 106 | simprd 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑃𝐷(𝑋(+g‘𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 ↑ (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
108 | 97, 104, 107 | 3eqtrd 2772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑃 ↑ 𝑦)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)) = (𝑃 ↑ (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
109 | 84, 108 | eqtrd 2768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦)) = (𝑃 ↑ (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
110 | 109 | eqcomd 2734 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ↑ (𝑦(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦))) |
111 | 65, 110 | eqtrd 2768 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦))) |
112 | 111 | adantlr 713 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦))) |
113 | 112 | ex 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦)))) |
114 | 113 | ex 411 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦))))) |
115 | 22, 114 | mpdd 43 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦)))) |
116 | 115 | imp 405 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦))) |
117 | 116 | ralrimiva 3143 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦))) |
118 | | aks6d1c1p2.1 |
. . 3
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒 ↑ 𝑦)))} |
119 | 29 | ply1crng 22124 |
. . . . . . . . 9
⊢ (𝐾 ∈ CRing → 𝑆 ∈ CRing) |
120 | 4, 119 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ CRing) |
121 | | crngring 20192 |
. . . . . . . 8
⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) |
122 | 120, 121 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Ring) |
123 | 122 | ringgrpd 20189 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Grp) |
124 | 41, 35 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
125 | 123, 124,
54 | 3jca 1125 |
. . . . 5
⊢ (𝜑 → (𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)) |
126 | 30, 60 | grpcl 18905 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵) |
127 | 125, 126 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵) |
128 | 23 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))) |
129 | 128 | eleq1d 2814 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)) |
130 | 127, 129 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
131 | 118, 130,
72 | aks6d1c1p1 41610 |
. 2
⊢ (𝜑 → (𝑃 ∼ 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝑃 ↑ 𝑦)))) |
132 | 117, 131 | mpbird 256 |
1
⊢ (𝜑 → 𝑃 ∼ 𝐹) |