Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p2 Structured version   Visualization version   GIF version

Theorem aks6d1c1p2 42091
Description: 𝑃 and linear factors are introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p2.2 𝑆 = (Poly1𝐾)
aks6d1c1p2.3 𝐵 = (Base‘𝑆)
aks6d1c1p2.4 𝑋 = (var1𝐾)
aks6d1c1p2.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p2.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p2.7 = (.g𝑉)
aks6d1c1p2.8 𝐶 = (algSc‘𝑆)
aks6d1c1p2.9 𝐷 = (.g𝑊)
aks6d1c1p2.10 𝑃 = (chr‘𝐾)
aks6d1c1p2.11 𝑂 = (eval1𝐾)
aks6d1c1p2.12 + = (+g𝑆)
aks6d1c1p2.13 (𝜑𝐾 ∈ Field)
aks6d1c1p2.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p2.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p2.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p2.17 (𝜑𝑃𝑁)
aks6d1c1p2.18 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
aks6d1c1p2.19 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
aks6d1c1p2 (𝜑𝑃 𝐹)
Distinct variable groups:   ,𝑒,𝑓   𝐵,𝑒,𝑓   𝑒,𝐹,𝑓,𝑦   𝑒,𝑂,𝑓   𝑃,𝑒,𝑓,𝑦   𝑅,𝑒,𝑓   𝑒,𝑉,𝑓   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝐷(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑅(𝑦)   𝑆(𝑦,𝑒,𝑓)   (𝑦)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑂(𝑦)   𝑉(𝑦)   𝑊(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p2
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p2.13 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Field)
2 isfld 20757 . . . . . . . . . . . . . 14 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
31, 2sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
43simprd 495 . . . . . . . . . . . 12 (𝜑𝐾 ∈ CRing)
5 aks6d1c1p2.6 . . . . . . . . . . . . 13 𝑉 = (mulGrp‘𝐾)
65crngmgp 20259 . . . . . . . . . . . 12 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
74, 6syl 17 . . . . . . . . . . 11 (𝜑𝑉 ∈ CMnd)
8 aks6d1c1p2.15 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
98nnnn0d 12585 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
10 aks6d1c1p2.7 . . . . . . . . . . 11 = (.g𝑉)
117, 9, 10isprimroot 42075 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
1211biimpd 229 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
1312imp 406 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙)))
1413simp1d 1141 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
15 eqid 2735 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
165, 15mgpbas 20158 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝑉)
1716eqcomi 2744 . . . . . . . . . 10 (Base‘𝑉) = (Base‘𝐾)
1817a1i 11 . . . . . . . . 9 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
1918adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
2019eleq2d 2825 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ↔ 𝑦 ∈ (Base‘𝐾)))
2114, 20mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
2221ex 412 . . . . 5 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → 𝑦 ∈ (Base‘𝐾)))
23 aks6d1c1p2.18 . . . . . . . . . . . . . 14 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
2423a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
2524fveq2d 6911 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑂𝐹) = (𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
2625fveq1d 6909 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘𝑦) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
2726oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = (𝑃 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
28 aks6d1c1p2.11 . . . . . . . . . . . . 13 𝑂 = (eval1𝐾)
29 aks6d1c1p2.2 . . . . . . . . . . . . 13 𝑆 = (Poly1𝐾)
30 aks6d1c1p2.3 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
314adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ CRing)
32 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
33 crngring 20263 . . . . . . . . . . . . . . 15 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
34 aks6d1c1p2.4 . . . . . . . . . . . . . . . 16 𝑋 = (var1𝐾)
3534, 29, 30vr1cl 22235 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → 𝑋𝐵)
3631, 33, 353syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑋𝐵)
3728, 34, 15, 29, 30, 31, 32evl1vard 22357 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
3837simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝑋)‘𝑦) = 𝑦)
3936, 38jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
404, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Ring)
414crngringd 20264 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ Ring)
42 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4342zrhrhm 21540 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
44 rhmghm 20501 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
45 zringbas 21482 . . . . . . . . . . . . . . . . . . 19 ℤ = (Base‘ℤring)
4645, 15ghmf 19251 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4741, 43, 44, 464syl 19 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
48 aks6d1c1p2.19 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℤ)
4947, 48ffvelcdmd 7105 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
50 aks6d1c1p2.8 . . . . . . . . . . . . . . . . 17 𝐶 = (algSc‘𝑆)
5129, 50, 15, 30ply1sclcl 22305 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5240, 49, 51syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5352adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
5449adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
5528, 29, 15, 50, 30, 31, 54, 32evl1scad 22355 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
5655simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴))
5753, 56jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
58 aks6d1c1p2.12 . . . . . . . . . . . . 13 + = (+g𝑆)
59 eqid 2735 . . . . . . . . . . . . 13 (+g𝐾) = (+g𝐾)
6028, 29, 15, 30, 31, 32, 39, 57, 58, 59evl1addd 22361 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6160simprd 495 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
6261oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6327, 62eqtrd 2775 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6425fveq1d 6909 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)))
65 eqid 2735 . . . . . . . . . . . . . . . 16 (Base‘𝑉) = (Base‘𝑉)
665ringmgp 20257 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Ring → 𝑉 ∈ Mnd)
6731, 33, 663syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑉 ∈ Mnd)
68 aks6d1c1p2.14 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℙ)
69 prmnn 16708 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
7068, 69syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℕ)
7170nnnn0d 12585 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℕ0)
7271adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑃 ∈ ℕ0)
7332, 16eleqtrdi 2849 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝑉))
7465, 10, 67, 72, 73mulgnn0cld 19126 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 𝑦) ∈ (Base‘𝑉))
7574, 17eleqtrdi 2849 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 𝑦) ∈ (Base‘𝐾))
7628, 34, 15, 29, 30, 31, 75evl1vard 22357 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑃 𝑦)) = (𝑃 𝑦)))
7728, 29, 15, 50, 30, 31, 54, 75evl1scad 22355 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
7877simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))
7953, 78jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑃 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
8028, 29, 15, 30, 31, 75, 76, 79, 58, 59evl1addd 22361 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
8180simprd 495 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8264, 81eqtrd 2775 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
83 aks6d1c1p2.9 . . . . . . . . . . . . . . . . . 18 𝐷 = (.g𝑊)
84 aks6d1c1p2.5 . . . . . . . . . . . . . . . . . . 19 𝑊 = (mulGrp‘𝑆)
8584fveq2i 6910 . . . . . . . . . . . . . . . . . 18 (.g𝑊) = (.g‘(mulGrp‘𝑆))
8683, 85eqtri 2763 . . . . . . . . . . . . . . . . 17 𝐷 = (.g‘(mulGrp‘𝑆))
875fveq2i 6910 . . . . . . . . . . . . . . . . . 18 (.g𝑉) = (.g‘(mulGrp‘𝐾))
8810, 87eqtri 2763 . . . . . . . . . . . . . . . . 17 = (.g‘(mulGrp‘𝐾))
8928, 29, 15, 30, 31, 32, 37, 86, 88, 72evl1expd 22365 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷𝑋))‘𝑦) = (𝑃 𝑦)))
90 eqid 2735 . . . . . . . . . . . . . . . 16 (+g𝑆) = (+g𝑆)
9128, 29, 15, 30, 31, 32, 89, 57, 90, 59evl1addd 22361 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐾)) → (((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9291simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
93 eqidd 2736 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
9492, 93eqtrd 2775 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
9594eqcomd 2741 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
96 eqid 2735 . . . . . . . . . . . . . . . . 17 (𝐶‘((ℤRHom‘𝐾)‘𝐴)) = (𝐶‘((ℤRHom‘𝐾)‘𝐴))
97 aks6d1c1p2.10 . . . . . . . . . . . . . . . . 17 𝑃 = (chr‘𝐾)
9829, 34, 90, 84, 83, 50, 96, 97, 4, 68, 48ply1fermltlchr 22332 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) = ((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))
9998fveq2d 6911 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))) = (𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
10099fveq1d 6909 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
101100eqcomd 2741 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦))
102101adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘((𝑃𝐷𝑋)(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦))
10328, 29, 15, 30, 31, 32, 37, 55, 90, 59evl1addd 22361 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10428, 29, 15, 30, 31, 32, 103, 86, 88, 72evl1expd 22365 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))) ∈ 𝐵 ∧ ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
105104simprd 495 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂‘(𝑃𝐷(𝑋(+g𝑆)(𝐶‘((ℤRHom‘𝐾)‘𝐴)))))‘𝑦) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10695, 102, 1053eqtrd 2779 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑃 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
10782, 106eqtrd 2775 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐾)) → ((𝑂𝐹)‘(𝑃 𝑦)) = (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
108107eqcomd 2741 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑂𝐹)‘(𝑃 𝑦)))
10963, 108eqtrd 2775 . . . . . . . 8 ((𝜑𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
110109adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
111110ex 412 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
112111ex 412 . . . . 5 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝐾) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))))
11322, 112mpdd 43 . . . 4 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
114113imp 406 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
115114ralrimiva 3144 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦)))
116 aks6d1c1p2.1 . . 3 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
11729ply1crng 22216 . . . . . . . . 9 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
1184, 117syl 17 . . . . . . . 8 (𝜑𝑆 ∈ CRing)
119 crngring 20263 . . . . . . . 8 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
120118, 119syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
121120ringgrpd 20260 . . . . . 6 (𝜑𝑆 ∈ Grp)
12241, 35syl 17 . . . . . 6 (𝜑𝑋𝐵)
123121, 122, 523jca 1127 . . . . 5 (𝜑 → (𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵))
12430, 58grpcl 18972 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
125123, 124syl 17 . . . 4 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
12623a1i 11 . . . . 5 (𝜑𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
127126eleq1d 2824 . . . 4 (𝜑 → (𝐹𝐵 ↔ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵))
128125, 127mpbird 257 . . 3 (𝜑𝐹𝐵)
129116, 128, 70aks6d1c1p1 42089 . 2 (𝜑 → (𝑃 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑃 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑃 𝑦))))
130115, 129mpbird 257 1 (𝜑𝑃 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  {copab 5210  wf 6559  cfv 6563  (class class class)co 7431  1c1 11154  cn 12264  0cn0 12524  cz 12611  cdvds 16287   gcd cgcd 16528  cprime 16705  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760  Grpcgrp 18964  .gcmg 19098   GrpHom cghm 19243  CMndccmn 19813  mulGrpcmgp 20152  Ringcrg 20251  CRingccrg 20252   RingHom crh 20486  DivRingcdr 20746  Fieldcfield 20747  ringczring 21475  ℤRHomczrh 21528  chrcchr 21530  algSccascl 21890  var1cv1 22193  Poly1cpl1 22194  eval1ce1 22334   PrimRoots cprimroots 42073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-od 19561  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-lmod 20877  df-lss 20948  df-lsp 20988  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-chr 21534  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evl1 22336  df-primroots 42074
This theorem is referenced by:  aks6d1c1  42098
  Copyright terms: Public domain W3C validator