Step | Hyp | Ref
| Expression |
1 | | aks6d1c1p8.2 |
. 2
⊢ (𝜑 → 𝐿 ∈
ℕ0) |
2 | | oveq2 7434 |
. . . 4
⊢ (ℎ = 0 → (𝐸↑ℎ) = (𝐸↑0)) |
3 | 2 | breq1d 5162 |
. . 3
⊢ (ℎ = 0 → ((𝐸↑ℎ) ∼ 𝐹 ↔ (𝐸↑0) ∼ 𝐹)) |
4 | | oveq2 7434 |
. . . 4
⊢ (ℎ = 𝑖 → (𝐸↑ℎ) = (𝐸↑𝑖)) |
5 | 4 | breq1d 5162 |
. . 3
⊢ (ℎ = 𝑖 → ((𝐸↑ℎ) ∼ 𝐹 ↔ (𝐸↑𝑖) ∼ 𝐹)) |
6 | | oveq2 7434 |
. . . 4
⊢ (ℎ = (𝑖 + 1) → (𝐸↑ℎ) = (𝐸↑(𝑖 + 1))) |
7 | 6 | breq1d 5162 |
. . 3
⊢ (ℎ = (𝑖 + 1) → ((𝐸↑ℎ) ∼ 𝐹 ↔ (𝐸↑(𝑖 + 1)) ∼ 𝐹)) |
8 | | oveq2 7434 |
. . . 4
⊢ (ℎ = 𝐿 → (𝐸↑ℎ) = (𝐸↑𝐿)) |
9 | 8 | breq1d 5162 |
. . 3
⊢ (ℎ = 𝐿 → ((𝐸↑ℎ) ∼ 𝐹 ↔ (𝐸↑𝐿) ∼ 𝐹)) |
10 | | aks6d1c1.1 |
. . . . . . . 8
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒 ↑ 𝑦)))} |
11 | | aks6d1c1p8.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∼ 𝐹) |
12 | 10, 11 | aks6d1c1p1rcl 41611 |
. . . . . . 7
⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
13 | 12 | simpld 493 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℕ) |
14 | 13 | nncnd 12266 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ ℂ) |
15 | 14 | exp0d 14144 |
. . . 4
⊢ (𝜑 → (𝐸↑0) = 1) |
16 | | aks6d1c1.11 |
. . . . . . . . . 10
⊢ 𝑂 = (eval1‘𝐾) |
17 | | aks6d1c1.2 |
. . . . . . . . . 10
⊢ 𝑆 = (Poly1‘𝐾) |
18 | | eqid 2728 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
19 | | aks6d1c1.3 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑆) |
20 | | aks6d1c1.13 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ Field) |
21 | 20 | fldcrngd 20644 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ CRing) |
22 | 21 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing) |
23 | | aks6d1c1.6 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑉 = (mulGrp‘𝐾) |
24 | 23 | crngmgp 20188 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ CRing → 𝑉 ∈ CMnd) |
25 | 21, 24 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ∈ CMnd) |
26 | | aks6d1c1.15 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈ ℕ) |
27 | 26 | nnnn0d 12570 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
28 | | aks6d1c1.7 |
. . . . . . . . . . . . . . 15
⊢ ↑ =
(.g‘𝑉) |
29 | 25, 27, 28 | isprimroot 41596 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙)))) |
30 | 29 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙)))) |
31 | 30 | imp 405 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙))) |
32 | 31 | simp1d 1139 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉)) |
33 | 23, 18 | mgpbas 20087 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝑉) |
34 | 32, 33 | eleqtrrdi 2840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾)) |
35 | 12 | simprd 494 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
36 | 35 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹 ∈ 𝐵) |
37 | 16, 17, 18, 19, 22, 34, 36 | fveval1fvcl 22259 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝐾)) |
38 | 37, 33 | eleqtrdi 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉)) |
39 | | eqid 2728 |
. . . . . . . . 9
⊢
(Base‘𝑉) =
(Base‘𝑉) |
40 | 39, 28 | mulg1 19043 |
. . . . . . . 8
⊢ (((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉) → (1 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘𝑦)) |
41 | 38, 40 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘𝑦)) |
42 | 39, 28 | mulg1 19043 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (Base‘𝑉) → (1 ↑ 𝑦) = 𝑦) |
43 | 32, 42 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1 ↑ 𝑦) = 𝑦) |
44 | 43 | eqcomd 2734 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 = (1 ↑ 𝑦)) |
45 | 44 | fveq2d 6906 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) = ((𝑂‘𝐹)‘(1 ↑ 𝑦))) |
46 | 41, 45 | eqtrd 2768 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(1 ↑ 𝑦))) |
47 | 46 | ralrimiva 3143 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(1 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(1 ↑ 𝑦))) |
48 | | 1nn 12261 |
. . . . . . 7
⊢ 1 ∈
ℕ |
49 | 48 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℕ) |
50 | 10, 35, 49 | aks6d1c1p1 41610 |
. . . . 5
⊢ (𝜑 → (1 ∼ 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(1 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(1 ↑ 𝑦)))) |
51 | 47, 50 | mpbird 256 |
. . . 4
⊢ (𝜑 → 1 ∼ 𝐹) |
52 | 15, 51 | eqbrtrd 5174 |
. . 3
⊢ (𝜑 → (𝐸↑0) ∼ 𝐹) |
53 | 14 | ad2antrr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → 𝐸 ∈ ℂ) |
54 | | 1nn0 12526 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
55 | 54 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → 1 ∈
ℕ0) |
56 | | simplr 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → 𝑖 ∈ ℕ0) |
57 | 53, 55, 56 | expaddd 14152 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → (𝐸↑(𝑖 + 1)) = ((𝐸↑𝑖) · (𝐸↑1))) |
58 | 53 | exp1d 14145 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → (𝐸↑1) = 𝐸) |
59 | 58 | oveq2d 7442 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → ((𝐸↑𝑖) · (𝐸↑1)) = ((𝐸↑𝑖) · 𝐸)) |
60 | 57, 59 | eqtrd 2768 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → (𝐸↑(𝑖 + 1)) = ((𝐸↑𝑖) · 𝐸)) |
61 | | aks6d1c1.4 |
. . . . 5
⊢ 𝑋 = (var1‘𝐾) |
62 | | aks6d1c1.5 |
. . . . 5
⊢ 𝑊 = (mulGrp‘𝑆) |
63 | | aks6d1c1.8 |
. . . . 5
⊢ 𝐶 = (algSc‘𝑆) |
64 | | aks6d1c1.10 |
. . . . 5
⊢ 𝑃 = (chr‘𝐾) |
65 | | aks6d1c1.12 |
. . . . 5
⊢ + =
(+g‘𝑆) |
66 | 20 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → 𝐾 ∈ Field) |
67 | | aks6d1c1.14 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℙ) |
68 | 67 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → 𝑃 ∈ ℙ) |
69 | 26 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → 𝑅 ∈ ℕ) |
70 | | aks6d1c1p8.3 |
. . . . . 6
⊢ (𝜑 → (𝐸 gcd 𝑅) = 1) |
71 | 70 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → (𝐸 gcd 𝑅) = 1) |
72 | | aks6d1c1.17 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
73 | 72 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → 𝑃 ∥ 𝑁) |
74 | | simpr 483 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → (𝐸↑𝑖) ∼ 𝐹) |
75 | 11 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → 𝐸 ∼ 𝐹) |
76 | 10, 17, 19, 61, 62, 23, 28, 63, 64, 16, 65, 66, 68, 69, 71, 73, 74, 75 | aks6d1c1p5 41615 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → ((𝐸↑𝑖) · 𝐸) ∼ 𝐹) |
77 | 60, 76 | eqbrtrd 5174 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ (𝐸↑𝑖) ∼ 𝐹) → (𝐸↑(𝑖 + 1)) ∼ 𝐹) |
78 | 3, 5, 7, 9, 52, 77 | nn0indd 12697 |
. 2
⊢ ((𝜑 ∧ 𝐿 ∈ ℕ0) → (𝐸↑𝐿) ∼ 𝐹) |
79 | 1, 78 | mpdan 685 |
1
⊢ (𝜑 → (𝐸↑𝐿) ∼ 𝐹) |