Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p5 Structured version   Visualization version   GIF version

Theorem aks6d1c1p5 42095
Description: The product of exponents is introspective. (Contributed by metakunt, 26-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p5.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p5.2 𝑆 = (Poly1𝐾)
aks6d1c1p5.3 𝐵 = (Base‘𝑆)
aks6d1c1p5.4 𝑋 = (var1𝐾)
aks6d1c1p5.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p5.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p5.7 = (.g𝑉)
aks6d1c1p5.8 𝐶 = (algSc‘𝑆)
aks6d1c1p5.10 𝑃 = (chr‘𝐾)
aks6d1c1p5.11 𝑂 = (eval1𝐾)
aks6d1c1p5.12 + = (+g𝑆)
aks6d1c1p5.13 (𝜑𝐾 ∈ Field)
aks6d1c1p5.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p5.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p5.16 (𝜑 → (𝐸 gcd 𝑅) = 1)
aks6d1c1p5.17 (𝜑𝑃𝑁)
aks6d1c1p5.18 (𝜑𝐷 𝐹)
aks6d1c1p5.19 (𝜑𝐸 𝐹)
Assertion
Ref Expression
aks6d1c1p5 (𝜑 → (𝐷 · 𝐸) 𝐹)
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝐵,𝑒,𝑓   𝐷,𝑒,𝑓,𝑦   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝑂,𝑓,𝑦   𝑅,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝑃(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑊(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p5
Dummy variables 𝑖 𝑙 𝑧 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p5.13 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
21fldcrngd 20627 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
3 aks6d1c1p5.6 . . . . . . . . 9 𝑉 = (mulGrp‘𝐾)
43crngmgp 20126 . . . . . . . 8 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
52, 4syl 17 . . . . . . 7 (𝜑𝑉 ∈ CMnd)
65cmnmndd 19683 . . . . . 6 (𝜑𝑉 ∈ Mnd)
76adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
8 aks6d1c1p5.1 . . . . . . . . . 10 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
9 aks6d1c1p5.18 . . . . . . . . . 10 (𝜑𝐷 𝐹)
108, 9aks6d1c1p1rcl 42091 . . . . . . . . 9 (𝜑 → (𝐷 ∈ ℕ ∧ 𝐹𝐵))
1110simpld 494 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
1211nnnn0d 12445 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1312adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐷 ∈ ℕ0)
14 aks6d1c1p5.19 . . . . . . . . . 10 (𝜑𝐸 𝐹)
158, 14aks6d1c1p1rcl 42091 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
1615simpld 494 . . . . . . . 8 (𝜑𝐸 ∈ ℕ)
1716nnnn0d 12445 . . . . . . 7 (𝜑𝐸 ∈ ℕ0)
1817adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈ ℕ0)
19 aks6d1c1p5.11 . . . . . . . 8 𝑂 = (eval1𝐾)
20 aks6d1c1p5.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
21 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
22 aks6d1c1p5.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
232adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
24 aks6d1c1p5.15 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
2524nnnn0d 12445 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
26 aks6d1c1p5.7 . . . . . . . . . . . . 13 = (.g𝑉)
275, 25, 26isprimroot 42076 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 𝑦) = (0g𝑉) → 𝑅𝑞))))
2827biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 𝑦) = (0g𝑉) → 𝑅𝑞))))
2928imp 406 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 𝑦) = (0g𝑉) → 𝑅𝑞)))
3029simp1d 1142 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
313, 21mgpbas 20030 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝑉)
3231a1i 11 . . . . . . . . . . 11 (𝜑 → (Base‘𝐾) = (Base‘𝑉))
3332eqcomd 2735 . . . . . . . . . 10 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
3433adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
3530, 34eleqtrd 2830 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
3610simprd 495 . . . . . . . . 9 (𝜑𝐹𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹𝐵)
3819, 20, 21, 22, 23, 35, 37fveval1fvcl 22218 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾))
3934eleq2d 2814 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦) ∈ (Base‘𝑉) ↔ ((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾)))
4038, 39mpbird 257 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘𝑉))
4113, 18, 403jca 1128 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ∈ ℕ0𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘𝑉)))
42 eqid 2729 . . . . . 6 (Base‘𝑉) = (Base‘𝑉)
4342, 26mulgnn0ass 18989 . . . . 5 ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘𝑉))) → ((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))))
447, 41, 43syl2anc 584 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))))
45 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)) = (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)))
46 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑙 = 𝑦) → 𝑙 = 𝑦)
4746oveq2d 7365 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑙 = 𝑦) → (𝐸 𝑙) = (𝐸 𝑦))
48 simpr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
4942, 26, 7, 18, 30mulgnn0cld 18974 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 𝑦) ∈ (Base‘𝑉))
5045, 47, 48, 49fvmptd 6937 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦) = (𝐸 𝑦))
5150fveq2d 6826 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
5251oveq2d 7365 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = (𝐷 ((𝑂𝐹)‘(𝐸 𝑦))))
5352eqcomd 2735 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘(𝐸 𝑦))) = (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))))
54 2fveq3 6827 . . . . . . . . . . 11 (𝑖 = 𝑦 → ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖)) = ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)))
5554oveq2d 7365 . . . . . . . . . 10 (𝑖 = 𝑦 → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))))
56 fveq2 6822 . . . . . . . . . . . 12 (𝑖 = 𝑦 → ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))
5756oveq2d 7365 . . . . . . . . . . 11 (𝑖 = 𝑦 → (𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖)) = (𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)))
5857fveq2d 6826 . . . . . . . . . 10 (𝑖 = 𝑦 → ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))))
5955, 58eqeq12d 2745 . . . . . . . . 9 (𝑖 = 𝑦 → ((𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) ↔ (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)))))
608, 36, 11aks6d1c1p1 42090 . . . . . . . . . . . . 13 (𝜑 → (𝐷 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
6160biimpd 229 . . . . . . . . . . . 12 (𝜑 → (𝐷 𝐹 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
629, 61mpd 15 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦)))
6326oveqi 7362 . . . . . . . . . . . . . . . 16 (𝐸 𝑙) = (𝐸(.g𝑉)𝑙)
6463a1i 11 . . . . . . . . . . . . . . 15 (𝑙 ∈ (𝑉 PrimRoots 𝑅) → (𝐸 𝑙) = (𝐸(.g𝑉)𝑙))
6564mpteq2ia 5187 . . . . . . . . . . . . . 14 (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)) = (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸(.g𝑉)𝑙))
66 aks6d1c1p5.16 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 gcd 𝑅) = 1)
6765, 5, 24, 16, 66primrootscoprbij2 42086 . . . . . . . . . . . . 13 (𝜑 → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–1-1-onto→(𝑉 PrimRoots 𝑅))
68 f1ofo 6771 . . . . . . . . . . . . 13 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–1-1-onto→(𝑉 PrimRoots 𝑅) → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅))
6967, 68syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅))
70 fveq2 6822 . . . . . . . . . . . . . . 15 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖)) = ((𝑂𝐹)‘𝑦))
7170oveq2d 7365 . . . . . . . . . . . . . 14 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = (𝐷 ((𝑂𝐹)‘𝑦)))
72 oveq2 7357 . . . . . . . . . . . . . . 15 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → (𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖)) = (𝐷 𝑦))
7372fveq2d 6826 . . . . . . . . . . . . . 14 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 𝑦)))
7471, 73eqeq12d 2745 . . . . . . . . . . . . 13 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → ((𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) ↔ (𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
7574cbvfo 7226 . . . . . . . . . . . 12 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅) → (∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
7669, 75syl 17 . . . . . . . . . . 11 (𝜑 → (∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
7762, 76mpbird 257 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))))
7877adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))))
7959, 78, 48rspcdva 3578 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))))
8050oveq2d 7365 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)) = (𝐷 (𝐸 𝑦)))
8180fveq2d 6826 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))))
8279, 81eqtrd 2764 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))))
8353, 82eqtr2d 2765 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))) = (𝐷 ((𝑂𝐹)‘(𝐸 𝑦))))
84 fveq2 6822 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
8584oveq2d 7365 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐹)‘𝑧)) = (𝐸 ((𝑂𝐹)‘𝑦)))
86 oveq2 7357 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 𝑧) = (𝐸 𝑦))
8786fveq2d 6826 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝐸 𝑧)) = ((𝑂𝐹)‘(𝐸 𝑦)))
8885, 87eqeq12d 2745 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
898, 36, 16aks6d1c1p1 42090 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
9089biimpd 229 . . . . . . . . . . . 12 (𝜑 → (𝐸 𝐹 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
9114, 90mpd 15 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
92 nfv 1914 . . . . . . . . . . . 12 𝑦(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧))
93 nfv 1914 . . . . . . . . . . . 12 𝑧(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))
9492, 93, 88cbvralw 3271 . . . . . . . . . . 11 (∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
9591, 94sylibr 234 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
9695adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
9788, 96, 48rspcdva 3578 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
9897eqcomd 2735 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐸 𝑦)) = (𝐸 ((𝑂𝐹)‘𝑦)))
9998oveq2d 7365 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘(𝐸 𝑦))) = (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))))
10083, 99eqtrd 2764 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))) = (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))))
101100eqcomd 2735 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))) = ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))))
10213, 18, 303jca 1128 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝑦 ∈ (Base‘𝑉)))
10342, 26mulgnn0ass 18989 . . . . . . 7 ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝑦 ∈ (Base‘𝑉))) → ((𝐷 · 𝐸) 𝑦) = (𝐷 (𝐸 𝑦)))
104103eqcomd 2735 . . . . . 6 ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝑦 ∈ (Base‘𝑉))) → (𝐷 (𝐸 𝑦)) = ((𝐷 · 𝐸) 𝑦))
1057, 102, 104syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 (𝐸 𝑦)) = ((𝐷 · 𝐸) 𝑦))
106105fveq2d 6826 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))) = ((𝑂𝐹)‘((𝐷 · 𝐸) 𝑦)))
10744, 101, 1063eqtrd 2768 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝐷 · 𝐸) 𝑦)))
108107ralrimiva 3121 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝐷 · 𝐸) 𝑦)))
10911, 16nnmulcld 12181 . . 3 (𝜑 → (𝐷 · 𝐸) ∈ ℕ)
1108, 36, 109aks6d1c1p1 42090 . 2 (𝜑 → ((𝐷 · 𝐸) 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝐷 · 𝐸) 𝑦))))
111108, 110mpbird 257 1 (𝜑 → (𝐷 · 𝐸) 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  {copab 5154  cmpt 5173  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  1c1 11010   · cmul 11014  cn 12128  0cn0 12384  cdvds 16163   gcd cgcd 16405  cprime 16582  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18608  .gcmg 18946  CMndccmn 19659  mulGrpcmgp 20025  CRingccrg 20119  Fieldcfield 20615  chrcchr 21408  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  eval1ce1 22199   PrimRoots cprimroots 42074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-ply1 22064  df-evl1 22201  df-primroots 42075
This theorem is referenced by:  aks6d1c1p8  42098  aks6d1c1  42099
  Copyright terms: Public domain W3C validator