Step | Hyp | Ref
| Expression |
1 | | aks6d1c1p5.13 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Field) |
2 | 1 | fldcrngd 20644 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ CRing) |
3 | | aks6d1c1p5.6 |
. . . . . . . . 9
⊢ 𝑉 = (mulGrp‘𝐾) |
4 | 3 | crngmgp 20188 |
. . . . . . . 8
⊢ (𝐾 ∈ CRing → 𝑉 ∈ CMnd) |
5 | 2, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ CMnd) |
6 | 5 | cmnmndd 19766 |
. . . . . 6
⊢ (𝜑 → 𝑉 ∈ Mnd) |
7 | 6 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd) |
8 | | aks6d1c1p5.1 |
. . . . . . . . . 10
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒 ↑ 𝑦)))} |
9 | | aks6d1c1p5.18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∼ 𝐹) |
10 | 8, 9 | aks6d1c1p1rcl 41611 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
11 | 10 | simpld 493 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℕ) |
12 | 11 | nnnn0d 12570 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
13 | 12 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐷 ∈
ℕ0) |
14 | | aks6d1c1p5.19 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∼ 𝐹) |
15 | 8, 14 | aks6d1c1p1rcl 41611 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
16 | 15 | simpld 493 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ℕ) |
17 | 16 | nnnn0d 12570 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
18 | 17 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈
ℕ0) |
19 | | aks6d1c1p5.11 |
. . . . . . . 8
⊢ 𝑂 = (eval1‘𝐾) |
20 | | aks6d1c1p5.2 |
. . . . . . . 8
⊢ 𝑆 = (Poly1‘𝐾) |
21 | | eqid 2728 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
22 | | aks6d1c1p5.3 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
23 | 2 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing) |
24 | | aks6d1c1p5.15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ ℕ) |
25 | 24 | nnnn0d 12570 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
26 | | aks6d1c1p5.7 |
. . . . . . . . . . . . 13
⊢ ↑ =
(.g‘𝑉) |
27 | 5, 25, 26 | isprimroot 41596 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑞)))) |
28 | 27 | biimpd 228 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑞)))) |
29 | 28 | imp 405 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑞))) |
30 | 29 | simp1d 1139 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉)) |
31 | 3, 21 | mgpbas 20087 |
. . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝑉) |
32 | 31 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝑉)) |
33 | 32 | eqcomd 2734 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑉) = (Base‘𝐾)) |
34 | 33 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾)) |
35 | 30, 34 | eleqtrd 2831 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾)) |
36 | 10 | simprd 494 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
37 | 36 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹 ∈ 𝐵) |
38 | 19, 20, 21, 22, 23, 35, 37 | fveval1fvcl 22259 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝐾)) |
39 | 34 | eleq2d 2815 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉) ↔ ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝐾))) |
40 | 38, 39 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉)) |
41 | 13, 18, 40 | 3jca 1125 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0
∧ ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉))) |
42 | | eqid 2728 |
. . . . . 6
⊢
(Base‘𝑉) =
(Base‘𝑉) |
43 | 42, 26 | mulgnn0ass 19072 |
. . . . 5
⊢ ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0
∧ 𝐸 ∈
ℕ0 ∧ ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉))) → ((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)))) |
44 | 7, 41, 43 | syl2anc 582 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)))) |
45 | | eqidd 2729 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)) = (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))) |
46 | | simpr 483 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑙 = 𝑦) → 𝑙 = 𝑦) |
47 | 46 | oveq2d 7442 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑙 = 𝑦) → (𝐸 ↑ 𝑙) = (𝐸 ↑ 𝑦)) |
48 | | simpr 483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅)) |
49 | 42, 26, 7, 18, 30 | mulgnn0cld 19057 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ 𝑦) ∈ (Base‘𝑉)) |
50 | 45, 47, 48, 49 | fvmptd 7017 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦) = (𝐸 ↑ 𝑦)) |
51 | 50 | fveq2d 6906 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
52 | 51 | oveq2d 7442 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = (𝐷 ↑ ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
53 | 52 | eqcomd 2734 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) = (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)))) |
54 | | 2fveq3 6907 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑦 → ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)) = ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) |
55 | 54 | oveq2d 7442 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑦 → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)))) |
56 | | fveq2 6902 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑦 → ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)) |
57 | 56 | oveq2d 7442 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑦 → (𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)) = (𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) |
58 | 57 | fveq2d 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑦 → ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)))) |
59 | 55, 58 | eqeq12d 2744 |
. . . . . . . . 9
⊢ (𝑖 = 𝑦 → ((𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) ↔ (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))))) |
60 | 8, 36, 11 | aks6d1c1p1 41610 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐷 ∼ 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
61 | 60 | biimpd 228 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷 ∼ 𝐹 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
62 | 9, 61 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦))) |
63 | 26 | oveqi 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 ↑ 𝑙) = (𝐸(.g‘𝑉)𝑙) |
64 | 63 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 ∈ (𝑉 PrimRoots 𝑅) → (𝐸 ↑ 𝑙) = (𝐸(.g‘𝑉)𝑙)) |
65 | 64 | mpteq2ia 5255 |
. . . . . . . . . . . . . 14
⊢ (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)) = (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸(.g‘𝑉)𝑙)) |
66 | | aks6d1c1p5.16 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸 gcd 𝑅) = 1) |
67 | 65, 5, 24, 16, 66 | primrootscoprbij2 41606 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–1-1-onto→(𝑉 PrimRoots 𝑅)) |
68 | | f1ofo 6851 |
. . . . . . . . . . . . 13
⊢ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–1-1-onto→(𝑉 PrimRoots 𝑅) → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅)) |
69 | 67, 68 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅)) |
70 | | fveq2 6902 |
. . . . . . . . . . . . . . 15
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)) = ((𝑂‘𝐹)‘𝑦)) |
71 | 70 | oveq2d 7442 |
. . . . . . . . . . . . . 14
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = (𝐷 ↑ ((𝑂‘𝐹)‘𝑦))) |
72 | | oveq2 7434 |
. . . . . . . . . . . . . . 15
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → (𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)) = (𝐷 ↑ 𝑦)) |
73 | 72 | fveq2d 6906 |
. . . . . . . . . . . . . 14
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦))) |
74 | 71, 73 | eqeq12d 2744 |
. . . . . . . . . . . . 13
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → ((𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) ↔ (𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
75 | 74 | cbvfo 7304 |
. . . . . . . . . . . 12
⊢ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅) → (∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
76 | 69, 75 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
77 | 62, 76 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)))) |
78 | 77 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)))) |
79 | 59, 78, 48 | rspcdva 3612 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)))) |
80 | 50 | oveq2d 7442 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)) = (𝐷 ↑ (𝐸 ↑ 𝑦))) |
81 | 80 | fveq2d 6906 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦)))) |
82 | 79, 81 | eqtrd 2768 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦)))) |
83 | 53, 82 | eqtr2d 2769 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦))) = (𝐷 ↑ ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
84 | | fveq2 6902 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → ((𝑂‘𝐹)‘𝑧) = ((𝑂‘𝐹)‘𝑦)) |
85 | 84 | oveq2d 7442 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = (𝐸 ↑ ((𝑂‘𝐹)‘𝑦))) |
86 | | oveq2 7434 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝐸 ↑ 𝑧) = (𝐸 ↑ 𝑦)) |
87 | 86 | fveq2d 6906 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
88 | 85, 87 | eqeq12d 2744 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → ((𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) ↔ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
89 | 8, 36, 16 | aks6d1c1p1 41610 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ∼ 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
90 | 89 | biimpd 228 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ∼ 𝐹 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
91 | 14, 90 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
92 | | nfv 1909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) |
93 | | nfv 1909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)) |
94 | 92, 93, 88 | cbvralw 3301 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
(𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
95 | 91, 94 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧))) |
96 | 95 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧))) |
97 | 88, 96, 48 | rspcdva 3612 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
98 | 97 | eqcomd 2734 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)) = (𝐸 ↑ ((𝑂‘𝐹)‘𝑦))) |
99 | 98 | oveq2d 7442 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) = (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)))) |
100 | 83, 99 | eqtrd 2768 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦))) = (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)))) |
101 | 100 | eqcomd 2734 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦)))) |
102 | 13, 18, 30 | 3jca 1125 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0
∧ 𝑦 ∈
(Base‘𝑉))) |
103 | 42, 26 | mulgnn0ass 19072 |
. . . . . . 7
⊢ ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0
∧ 𝐸 ∈
ℕ0 ∧ 𝑦
∈ (Base‘𝑉)))
→ ((𝐷 · 𝐸) ↑ 𝑦) = (𝐷 ↑ (𝐸 ↑ 𝑦))) |
104 | 103 | eqcomd 2734 |
. . . . . 6
⊢ ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0
∧ 𝐸 ∈
ℕ0 ∧ 𝑦
∈ (Base‘𝑉)))
→ (𝐷 ↑ (𝐸 ↑ 𝑦)) = ((𝐷 · 𝐸) ↑ 𝑦)) |
105 | 7, 102, 104 | syl2anc 582 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ (𝐸 ↑ 𝑦)) = ((𝐷 · 𝐸) ↑ 𝑦)) |
106 | 105 | fveq2d 6906 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦))) = ((𝑂‘𝐹)‘((𝐷 · 𝐸) ↑ 𝑦))) |
107 | 44, 101, 106 | 3eqtrd 2772 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘((𝐷 · 𝐸) ↑ 𝑦))) |
108 | 107 | ralrimiva 3143 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘((𝐷 · 𝐸) ↑ 𝑦))) |
109 | 11, 16 | nnmulcld 12303 |
. . 3
⊢ (𝜑 → (𝐷 · 𝐸) ∈ ℕ) |
110 | 8, 36, 109 | aks6d1c1p1 41610 |
. 2
⊢ (𝜑 → ((𝐷 · 𝐸) ∼ 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘((𝐷 · 𝐸) ↑ 𝑦)))) |
111 | 108, 110 | mpbird 256 |
1
⊢ (𝜑 → (𝐷 · 𝐸) ∼ 𝐹) |