| Step | Hyp | Ref
| Expression |
| 1 | | aks6d1c1p5.13 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Field) |
| 2 | 1 | fldcrngd 20742 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ CRing) |
| 3 | | aks6d1c1p5.6 |
. . . . . . . . 9
⊢ 𝑉 = (mulGrp‘𝐾) |
| 4 | 3 | crngmgp 20238 |
. . . . . . . 8
⊢ (𝐾 ∈ CRing → 𝑉 ∈ CMnd) |
| 5 | 2, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ CMnd) |
| 6 | 5 | cmnmndd 19822 |
. . . . . 6
⊢ (𝜑 → 𝑉 ∈ Mnd) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd) |
| 8 | | aks6d1c1p5.1 |
. . . . . . . . . 10
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒 ↑ 𝑦)))} |
| 9 | | aks6d1c1p5.18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∼ 𝐹) |
| 10 | 8, 9 | aks6d1c1p1rcl 42109 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
| 11 | 10 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℕ) |
| 12 | 11 | nnnn0d 12587 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
| 13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐷 ∈
ℕ0) |
| 14 | | aks6d1c1p5.19 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∼ 𝐹) |
| 15 | 8, 14 | aks6d1c1p1rcl 42109 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
| 16 | 15 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ℕ) |
| 17 | 16 | nnnn0d 12587 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈
ℕ0) |
| 19 | | aks6d1c1p5.11 |
. . . . . . . 8
⊢ 𝑂 = (eval1‘𝐾) |
| 20 | | aks6d1c1p5.2 |
. . . . . . . 8
⊢ 𝑆 = (Poly1‘𝐾) |
| 21 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 22 | | aks6d1c1p5.3 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
| 23 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing) |
| 24 | | aks6d1c1p5.15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ ℕ) |
| 25 | 24 | nnnn0d 12587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
| 26 | | aks6d1c1p5.7 |
. . . . . . . . . . . . 13
⊢ ↑ =
(.g‘𝑉) |
| 27 | 5, 25, 26 | isprimroot 42094 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑞)))) |
| 28 | 27 | biimpd 229 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑞)))) |
| 29 | 28 | imp 406 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑞))) |
| 30 | 29 | simp1d 1143 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉)) |
| 31 | 3, 21 | mgpbas 20142 |
. . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝑉) |
| 32 | 31 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝑉)) |
| 33 | 32 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑉) = (Base‘𝐾)) |
| 34 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾)) |
| 35 | 30, 34 | eleqtrd 2843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾)) |
| 36 | 10 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 37 | 36 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹 ∈ 𝐵) |
| 38 | 19, 20, 21, 22, 23, 35, 37 | fveval1fvcl 22337 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝐾)) |
| 39 | 34 | eleq2d 2827 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉) ↔ ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝐾))) |
| 40 | 38, 39 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉)) |
| 41 | 13, 18, 40 | 3jca 1129 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0
∧ ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉))) |
| 42 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑉) =
(Base‘𝑉) |
| 43 | 42, 26 | mulgnn0ass 19128 |
. . . . 5
⊢ ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0
∧ 𝐸 ∈
ℕ0 ∧ ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝑉))) → ((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)))) |
| 44 | 7, 41, 43 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)))) |
| 45 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)) = (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))) |
| 46 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑙 = 𝑦) → 𝑙 = 𝑦) |
| 47 | 46 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑙 = 𝑦) → (𝐸 ↑ 𝑙) = (𝐸 ↑ 𝑦)) |
| 48 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅)) |
| 49 | 42, 26, 7, 18, 30 | mulgnn0cld 19113 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ 𝑦) ∈ (Base‘𝑉)) |
| 50 | 45, 47, 48, 49 | fvmptd 7023 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦) = (𝐸 ↑ 𝑦)) |
| 51 | 50 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
| 52 | 51 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = (𝐷 ↑ ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
| 53 | 52 | eqcomd 2743 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) = (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)))) |
| 54 | | 2fveq3 6911 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑦 → ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)) = ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) |
| 55 | 54 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑦 → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)))) |
| 56 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑦 → ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)) |
| 57 | 56 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑦 → (𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)) = (𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) |
| 58 | 57 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑦 → ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)))) |
| 59 | 55, 58 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝑖 = 𝑦 → ((𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) ↔ (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))))) |
| 60 | 8, 36, 11 | aks6d1c1p1 42108 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐷 ∼ 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
| 61 | 60 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷 ∼ 𝐹 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
| 62 | 9, 61 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦))) |
| 63 | 26 | oveqi 7444 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 ↑ 𝑙) = (𝐸(.g‘𝑉)𝑙) |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 ∈ (𝑉 PrimRoots 𝑅) → (𝐸 ↑ 𝑙) = (𝐸(.g‘𝑉)𝑙)) |
| 65 | 64 | mpteq2ia 5245 |
. . . . . . . . . . . . . 14
⊢ (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)) = (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸(.g‘𝑉)𝑙)) |
| 66 | | aks6d1c1p5.16 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸 gcd 𝑅) = 1) |
| 67 | 65, 5, 24, 16, 66 | primrootscoprbij2 42104 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–1-1-onto→(𝑉 PrimRoots 𝑅)) |
| 68 | | f1ofo 6855 |
. . . . . . . . . . . . 13
⊢ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–1-1-onto→(𝑉 PrimRoots 𝑅) → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅)) |
| 69 | 67, 68 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅)) |
| 70 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)) = ((𝑂‘𝐹)‘𝑦)) |
| 71 | 70 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = (𝐷 ↑ ((𝑂‘𝐹)‘𝑦))) |
| 72 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → (𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)) = (𝐷 ↑ 𝑦)) |
| 73 | 72 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦))) |
| 74 | 71, 73 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖) = 𝑦 → ((𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) ↔ (𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
| 75 | 74 | cbvfo 7309 |
. . . . . . . . . . . 12
⊢ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅) → (∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
| 76 | 69, 75 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐷 ↑ 𝑦)))) |
| 77 | 62, 76 | mpbird 257 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)))) |
| 78 | 77 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑖)))) |
| 79 | 59, 78, 48 | rspcdva 3623 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)))) |
| 80 | 50 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦)) = (𝐷 ↑ (𝐸 ↑ 𝑦))) |
| 81 | 80 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐷 ↑ ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦)))) |
| 82 | 79, 81 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 ↑ 𝑙))‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦)))) |
| 83 | 53, 82 | eqtr2d 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦))) = (𝐷 ↑ ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
| 84 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → ((𝑂‘𝐹)‘𝑧) = ((𝑂‘𝐹)‘𝑦)) |
| 85 | 84 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = (𝐸 ↑ ((𝑂‘𝐹)‘𝑦))) |
| 86 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝐸 ↑ 𝑧) = (𝐸 ↑ 𝑦)) |
| 87 | 86 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
| 88 | 85, 87 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → ((𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) ↔ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
| 89 | 8, 36, 16 | aks6d1c1p1 42108 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ∼ 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
| 90 | 89 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ∼ 𝐹 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
| 91 | 14, 90 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
| 92 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) |
| 93 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)) |
| 94 | 92, 93, 88 | cbvralw 3306 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
(𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
| 95 | 91, 94 | sylibr 234 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧))) |
| 96 | 95 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧))) |
| 97 | 88, 96, 48 | rspcdva 3623 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
| 98 | 97 | eqcomd 2743 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)) = (𝐸 ↑ ((𝑂‘𝐹)‘𝑦))) |
| 99 | 98 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) = (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)))) |
| 100 | 83, 99 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦))) = (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)))) |
| 101 | 100 | eqcomd 2743 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦))) = ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦)))) |
| 102 | 13, 18, 30 | 3jca 1129 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0
∧ 𝑦 ∈
(Base‘𝑉))) |
| 103 | 42, 26 | mulgnn0ass 19128 |
. . . . . . 7
⊢ ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0
∧ 𝐸 ∈
ℕ0 ∧ 𝑦
∈ (Base‘𝑉)))
→ ((𝐷 · 𝐸) ↑ 𝑦) = (𝐷 ↑ (𝐸 ↑ 𝑦))) |
| 104 | 103 | eqcomd 2743 |
. . . . . 6
⊢ ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0
∧ 𝐸 ∈
ℕ0 ∧ 𝑦
∈ (Base‘𝑉)))
→ (𝐷 ↑ (𝐸 ↑ 𝑦)) = ((𝐷 · 𝐸) ↑ 𝑦)) |
| 105 | 7, 102, 104 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ↑ (𝐸 ↑ 𝑦)) = ((𝐷 · 𝐸) ↑ 𝑦)) |
| 106 | 105 | fveq2d 6910 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐷 ↑ (𝐸 ↑ 𝑦))) = ((𝑂‘𝐹)‘((𝐷 · 𝐸) ↑ 𝑦))) |
| 107 | 44, 101, 106 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘((𝐷 · 𝐸) ↑ 𝑦))) |
| 108 | 107 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘((𝐷 · 𝐸) ↑ 𝑦))) |
| 109 | 11, 16 | nnmulcld 12319 |
. . 3
⊢ (𝜑 → (𝐷 · 𝐸) ∈ ℕ) |
| 110 | 8, 36, 109 | aks6d1c1p1 42108 |
. 2
⊢ (𝜑 → ((𝐷 · 𝐸) ∼ 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝐷 · 𝐸) ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘((𝐷 · 𝐸) ↑ 𝑦)))) |
| 111 | 108, 110 | mpbird 257 |
1
⊢ (𝜑 → (𝐷 · 𝐸) ∼ 𝐹) |