Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p5 Structured version   Visualization version   GIF version

Theorem aks6d1c1p5 42072
Description: The product of exponents is introspective. (Contributed by metakunt, 26-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p5.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p5.2 𝑆 = (Poly1𝐾)
aks6d1c1p5.3 𝐵 = (Base‘𝑆)
aks6d1c1p5.4 𝑋 = (var1𝐾)
aks6d1c1p5.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p5.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p5.7 = (.g𝑉)
aks6d1c1p5.8 𝐶 = (algSc‘𝑆)
aks6d1c1p5.10 𝑃 = (chr‘𝐾)
aks6d1c1p5.11 𝑂 = (eval1𝐾)
aks6d1c1p5.12 + = (+g𝑆)
aks6d1c1p5.13 (𝜑𝐾 ∈ Field)
aks6d1c1p5.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p5.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p5.16 (𝜑 → (𝐸 gcd 𝑅) = 1)
aks6d1c1p5.17 (𝜑𝑃𝑁)
aks6d1c1p5.18 (𝜑𝐷 𝐹)
aks6d1c1p5.19 (𝜑𝐸 𝐹)
Assertion
Ref Expression
aks6d1c1p5 (𝜑 → (𝐷 · 𝐸) 𝐹)
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝐵,𝑒,𝑓   𝐷,𝑒,𝑓,𝑦   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝑂,𝑓,𝑦   𝑅,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝑃(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑊(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p5
Dummy variables 𝑖 𝑙 𝑧 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p5.13 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
21fldcrngd 20710 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
3 aks6d1c1p5.6 . . . . . . . . 9 𝑉 = (mulGrp‘𝐾)
43crngmgp 20206 . . . . . . . 8 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
52, 4syl 17 . . . . . . 7 (𝜑𝑉 ∈ CMnd)
65cmnmndd 19790 . . . . . 6 (𝜑𝑉 ∈ Mnd)
76adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
8 aks6d1c1p5.1 . . . . . . . . . 10 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
9 aks6d1c1p5.18 . . . . . . . . . 10 (𝜑𝐷 𝐹)
108, 9aks6d1c1p1rcl 42068 . . . . . . . . 9 (𝜑 → (𝐷 ∈ ℕ ∧ 𝐹𝐵))
1110simpld 494 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
1211nnnn0d 12570 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1312adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐷 ∈ ℕ0)
14 aks6d1c1p5.19 . . . . . . . . . 10 (𝜑𝐸 𝐹)
158, 14aks6d1c1p1rcl 42068 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
1615simpld 494 . . . . . . . 8 (𝜑𝐸 ∈ ℕ)
1716nnnn0d 12570 . . . . . . 7 (𝜑𝐸 ∈ ℕ0)
1817adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈ ℕ0)
19 aks6d1c1p5.11 . . . . . . . 8 𝑂 = (eval1𝐾)
20 aks6d1c1p5.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
21 eqid 2734 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
22 aks6d1c1p5.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
232adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
24 aks6d1c1p5.15 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
2524nnnn0d 12570 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
26 aks6d1c1p5.7 . . . . . . . . . . . . 13 = (.g𝑉)
275, 25, 26isprimroot 42053 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 𝑦) = (0g𝑉) → 𝑅𝑞))))
2827biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 𝑦) = (0g𝑉) → 𝑅𝑞))))
2928imp 406 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑞 ∈ ℕ0 ((𝑞 𝑦) = (0g𝑉) → 𝑅𝑞)))
3029simp1d 1142 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
313, 21mgpbas 20110 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝑉)
3231a1i 11 . . . . . . . . . . 11 (𝜑 → (Base‘𝐾) = (Base‘𝑉))
3332eqcomd 2740 . . . . . . . . . 10 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
3433adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
3530, 34eleqtrd 2835 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
3610simprd 495 . . . . . . . . 9 (𝜑𝐹𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹𝐵)
3819, 20, 21, 22, 23, 35, 37fveval1fvcl 22285 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾))
3934eleq2d 2819 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦) ∈ (Base‘𝑉) ↔ ((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾)))
4038, 39mpbird 257 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘𝑉))
4113, 18, 403jca 1128 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ∈ ℕ0𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘𝑉)))
42 eqid 2734 . . . . . 6 (Base‘𝑉) = (Base‘𝑉)
4342, 26mulgnn0ass 19097 . . . . 5 ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘𝑉))) → ((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))))
447, 41, 43syl2anc 584 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))))
45 eqidd 2735 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)) = (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)))
46 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑙 = 𝑦) → 𝑙 = 𝑦)
4746oveq2d 7429 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑙 = 𝑦) → (𝐸 𝑙) = (𝐸 𝑦))
48 simpr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
4942, 26, 7, 18, 30mulgnn0cld 19082 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 𝑦) ∈ (Base‘𝑉))
5045, 47, 48, 49fvmptd 7003 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦) = (𝐸 𝑦))
5150fveq2d 6890 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
5251oveq2d 7429 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = (𝐷 ((𝑂𝐹)‘(𝐸 𝑦))))
5352eqcomd 2740 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘(𝐸 𝑦))) = (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))))
54 2fveq3 6891 . . . . . . . . . . 11 (𝑖 = 𝑦 → ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖)) = ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)))
5554oveq2d 7429 . . . . . . . . . 10 (𝑖 = 𝑦 → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))))
56 fveq2 6886 . . . . . . . . . . . 12 (𝑖 = 𝑦 → ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))
5756oveq2d 7429 . . . . . . . . . . 11 (𝑖 = 𝑦 → (𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖)) = (𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)))
5857fveq2d 6890 . . . . . . . . . 10 (𝑖 = 𝑦 → ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))))
5955, 58eqeq12d 2750 . . . . . . . . 9 (𝑖 = 𝑦 → ((𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) ↔ (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)))))
608, 36, 11aks6d1c1p1 42067 . . . . . . . . . . . . 13 (𝜑 → (𝐷 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
6160biimpd 229 . . . . . . . . . . . 12 (𝜑 → (𝐷 𝐹 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
629, 61mpd 15 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦)))
6326oveqi 7426 . . . . . . . . . . . . . . . 16 (𝐸 𝑙) = (𝐸(.g𝑉)𝑙)
6463a1i 11 . . . . . . . . . . . . . . 15 (𝑙 ∈ (𝑉 PrimRoots 𝑅) → (𝐸 𝑙) = (𝐸(.g𝑉)𝑙))
6564mpteq2ia 5225 . . . . . . . . . . . . . 14 (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)) = (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸(.g𝑉)𝑙))
66 aks6d1c1p5.16 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 gcd 𝑅) = 1)
6765, 5, 24, 16, 66primrootscoprbij2 42063 . . . . . . . . . . . . 13 (𝜑 → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–1-1-onto→(𝑉 PrimRoots 𝑅))
68 f1ofo 6835 . . . . . . . . . . . . 13 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–1-1-onto→(𝑉 PrimRoots 𝑅) → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅))
6967, 68syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅))
70 fveq2 6886 . . . . . . . . . . . . . . 15 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖)) = ((𝑂𝐹)‘𝑦))
7170oveq2d 7429 . . . . . . . . . . . . . 14 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = (𝐷 ((𝑂𝐹)‘𝑦)))
72 oveq2 7421 . . . . . . . . . . . . . . 15 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → (𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖)) = (𝐷 𝑦))
7372fveq2d 6890 . . . . . . . . . . . . . 14 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 𝑦)))
7471, 73eqeq12d 2750 . . . . . . . . . . . . 13 (((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖) = 𝑦 → ((𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) ↔ (𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
7574cbvfo 7291 . . . . . . . . . . . 12 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙)):(𝑉 PrimRoots 𝑅)–onto→(𝑉 PrimRoots 𝑅) → (∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
7669, 75syl 17 . . . . . . . . . . 11 (𝜑 → (∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐷 𝑦))))
7762, 76mpbird 257 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))))
7877adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑖 ∈ (𝑉 PrimRoots 𝑅)(𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑖))))
7959, 78, 48rspcdva 3606 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))))
8050oveq2d 7429 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦)) = (𝐷 (𝐸 𝑦)))
8180fveq2d 6890 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐷 ((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))))
8279, 81eqtrd 2769 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘((𝑙 ∈ (𝑉 PrimRoots 𝑅) ↦ (𝐸 𝑙))‘𝑦))) = ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))))
8353, 82eqtr2d 2770 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))) = (𝐷 ((𝑂𝐹)‘(𝐸 𝑦))))
84 fveq2 6886 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
8584oveq2d 7429 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐹)‘𝑧)) = (𝐸 ((𝑂𝐹)‘𝑦)))
86 oveq2 7421 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 𝑧) = (𝐸 𝑦))
8786fveq2d 6890 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝐸 𝑧)) = ((𝑂𝐹)‘(𝐸 𝑦)))
8885, 87eqeq12d 2750 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
898, 36, 16aks6d1c1p1 42067 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
9089biimpd 229 . . . . . . . . . . . 12 (𝜑 → (𝐸 𝐹 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
9114, 90mpd 15 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
92 nfv 1913 . . . . . . . . . . . 12 𝑦(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧))
93 nfv 1913 . . . . . . . . . . . 12 𝑧(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))
9492, 93, 88cbvralw 3289 . . . . . . . . . . 11 (∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
9591, 94sylibr 234 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
9695adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
9788, 96, 48rspcdva 3606 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
9897eqcomd 2740 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐸 𝑦)) = (𝐸 ((𝑂𝐹)‘𝑦)))
9998oveq2d 7429 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ((𝑂𝐹)‘(𝐸 𝑦))) = (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))))
10083, 99eqtrd 2769 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))) = (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))))
101100eqcomd 2740 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 (𝐸 ((𝑂𝐹)‘𝑦))) = ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))))
10213, 18, 303jca 1128 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝑦 ∈ (Base‘𝑉)))
10342, 26mulgnn0ass 19097 . . . . . . 7 ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝑦 ∈ (Base‘𝑉))) → ((𝐷 · 𝐸) 𝑦) = (𝐷 (𝐸 𝑦)))
104103eqcomd 2740 . . . . . 6 ((𝑉 ∈ Mnd ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝑦 ∈ (Base‘𝑉))) → (𝐷 (𝐸 𝑦)) = ((𝐷 · 𝐸) 𝑦))
1057, 102, 104syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐷 (𝐸 𝑦)) = ((𝐷 · 𝐸) 𝑦))
106105fveq2d 6890 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐷 (𝐸 𝑦))) = ((𝑂𝐹)‘((𝐷 · 𝐸) 𝑦)))
10744, 101, 1063eqtrd 2773 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝐷 · 𝐸) 𝑦)))
108107ralrimiva 3133 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝐷 · 𝐸) 𝑦)))
10911, 16nnmulcld 12301 . . 3 (𝜑 → (𝐷 · 𝐸) ∈ ℕ)
1108, 36, 109aks6d1c1p1 42067 . 2 (𝜑 → ((𝐷 · 𝐸) 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝐷 · 𝐸) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝐷 · 𝐸) 𝑦))))
111108, 110mpbird 257 1 (𝜑 → (𝐷 · 𝐸) 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050   class class class wbr 5123  {copab 5185  cmpt 5205  ontowfo 6539  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  1c1 11138   · cmul 11142  cn 12248  0cn0 12509  cdvds 16272   gcd cgcd 16513  cprime 16690  Basecbs 17229  +gcplusg 17273  0gc0g 17455  Mndcmnd 18716  .gcmg 19054  CMndccmn 19766  mulGrpcmgp 20105  CRingccrg 20199  Fieldcfield 20698  chrcchr 21474  algSccascl 21826  var1cv1 22125  Poly1cpl1 22126  eval1ce1 22266   PrimRoots cprimroots 42051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-dvds 16273  df-gcd 16514  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-0g 17457  df-gsum 17458  df-prds 17463  df-pws 17465  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-ghm 19200  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-rhm 20440  df-subrng 20514  df-subrg 20538  df-field 20700  df-lmod 20828  df-lss 20898  df-lsp 20938  df-assa 21827  df-asp 21828  df-ascl 21829  df-psr 21883  df-mvr 21884  df-mpl 21885  df-opsr 21887  df-evls 22046  df-evl 22047  df-psr1 22129  df-ply1 22131  df-evl1 22268  df-primroots 42052
This theorem is referenced by:  aks6d1c1p8  42075  aks6d1c1  42076
  Copyright terms: Public domain W3C validator