Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p3 Structured version   Visualization version   GIF version

Theorem aks6d1c1p3 42123
Description: In a field with a Frobenius isomorphism (read: algebraic closure or finite field), 𝑁 and linear factors are introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p3.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p3.2 𝑆 = (Poly1𝐾)
aks6d1c1p3.3 𝐵 = (Base‘𝑆)
aks6d1c1p3.4 𝑋 = (var1𝐾)
aks6d1c1p3.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p3.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p3.7 = (.g𝑉)
aks6d1c1p3.8 𝐶 = (algSc‘𝑆)
aks6d1c1p3.9 𝐷 = (.g𝑊)
aks6d1c1p3.10 𝑃 = (chr‘𝐾)
aks6d1c1p3.11 𝑂 = (eval1𝐾)
aks6d1c1p3.12 + = (+g𝑆)
aks6d1c1p3.13 (𝜑𝐾 ∈ Field)
aks6d1c1p3.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p3.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p3.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p3.17 (𝜑𝑃𝑁)
aks6d1c1p3.18 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
aks6d1c1p3.19 (𝜑𝐴 ∈ ℤ)
aks6d1c1p3.20 (𝜑𝑁 𝐹)
aks6d1c1p3.21 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
Assertion
Ref Expression
aks6d1c1p3 (𝜑 → (𝑁 / 𝑃) 𝐹)
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝑥, ,𝑦   𝑥,𝐴   𝐵,𝑒,𝑓   𝑒,𝐹,𝑓,𝑦   𝑥,𝐾   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑒,𝑂,𝑓,𝑦   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑒,𝑉,𝑓,𝑦   𝑥,𝑉   𝜑,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑒,𝑓)   𝐷(𝑥,𝑦,𝑒,𝑓)   + (𝑥,𝑦,𝑒,𝑓)   (𝑥,𝑦,𝑒,𝑓)   𝑆(𝑥,𝑦,𝑒,𝑓)   𝐹(𝑥)   𝐾(𝑦,𝑒,𝑓)   𝑂(𝑥)   𝑊(𝑥,𝑦,𝑒,𝑓)   𝑋(𝑥,𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p3
Dummy variables 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p3.18 . . . . . . . . 9 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
21a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
32fveq2d 6880 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂𝐹) = (𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
43fveq1d 6878 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)))
5 aks6d1c1p3.11 . . . . . . . 8 𝑂 = (eval1𝐾)
6 aks6d1c1p3.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
7 eqid 2735 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
8 aks6d1c1p3.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
9 aks6d1c1p3.13 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
109fldcrngd 20702 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
1110adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
12 eqid 2735 . . . . . . . . . 10 (Base‘𝑉) = (Base‘𝑉)
13 aks6d1c1p3.7 . . . . . . . . . 10 = (.g𝑉)
14 aks6d1c1p3.6 . . . . . . . . . . . . . 14 𝑉 = (mulGrp‘𝐾)
1514crngmgp 20201 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
1610, 15syl 17 . . . . . . . . . . . 12 (𝜑𝑉 ∈ CMnd)
1716cmnmndd 19785 . . . . . . . . . . 11 (𝜑𝑉 ∈ Mnd)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
19 aks6d1c1p3.17 . . . . . . . . . . . . 13 (𝜑𝑃𝑁)
20 aks6d1c1p3.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
21 aks6d1c1p3.20 . . . . . . . . . . . . . . . 16 (𝜑𝑁 𝐹)
2220, 21aks6d1c1p1rcl 42121 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐹𝐵))
2322simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
24 aks6d1c1p3.14 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℙ)
25 prmnn 16693 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2624, 25syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
27 nndivdvds 16281 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
2823, 26, 27syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
2919, 28mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
3029nnnn0d 12562 . . . . . . . . . . 11 (𝜑 → (𝑁 / 𝑃) ∈ ℕ0)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 / 𝑃) ∈ ℕ0)
32 aks6d1c1p3.15 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℕ)
3332nnnn0d 12562 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ0)
3416, 33, 13isprimroot 42106 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
3534biimpd 229 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
3635imp 406 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙)))
3736simp1d 1142 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
3812, 13, 18, 31, 37mulgnn0cld 19078 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝑉))
3914, 7mgpbas 20105 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝑉)
4039eqcomi 2744 . . . . . . . . . . 11 (Base‘𝑉) = (Base‘𝐾)
4140a1i 11 . . . . . . . . . 10 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
4241adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
4338, 42eleqtrd 2836 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝐾))
44 aks6d1c1p3.4 . . . . . . . . 9 𝑋 = (var1𝐾)
455, 44, 7, 6, 8, 11, 43evl1vard 22275 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘((𝑁 / 𝑃) 𝑦)) = ((𝑁 / 𝑃) 𝑦)))
46 aks6d1c1p3.8 . . . . . . . . 9 𝐶 = (algSc‘𝑆)
4710crngringd 20206 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
48 eqid 2735 . . . . . . . . . . . . 13 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4948zrhrhm 21472 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
50 rhmghm 20444 . . . . . . . . . . . 12 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
51 zringbas 21414 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
5251, 7ghmf 19203 . . . . . . . . . . . 12 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5347, 49, 50, 524syl 19 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
54 aks6d1c1p3.19 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
5553, 54ffvelcdmd 7075 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
5655adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
575, 6, 7, 46, 8, 11, 56, 43evl1scad 22273 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘((𝑁 / 𝑃) 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
58 aks6d1c1p3.12 . . . . . . . 8 + = (+g𝑆)
59 eqid 2735 . . . . . . . 8 (+g𝐾) = (+g𝐾)
605, 6, 7, 8, 11, 43, 45, 57, 58, 59evl1addd 22279 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6160simprd 495 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
624, 61eqtrd 2770 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
633fveq1d 6878 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
6463oveq2d 7421 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑁 / 𝑃) ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
6542eleq2d 2820 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ↔ 𝑦 ∈ (Base‘𝐾)))
6637, 65mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
675, 44, 40, 6, 8, 11, 37evl1vard 22275 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
685, 6, 7, 46, 8, 11, 56, 66evl1scad 22273 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
695, 6, 7, 8, 11, 66, 67, 68, 58, 59evl1addd 22279 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
7069simprd 495 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
7170oveq2d 7421 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
7264, 71eqtrd 2770 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
73 aks6d1c1p3.21 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
747, 7isrim 20452 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾) ↔ ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)))
7573, 74sylib 218 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)))
7675simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7776adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7811crnggrpd 20207 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ Grp)
797, 59, 78, 43, 56grpcld 18930 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
80 f1ocnvfv1 7269 . . . . . . . . . 10 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8177, 79, 80syl2anc 584 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8281eqcomd 2741 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
83 eqidd 2736 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)))
84 id 22 . . . . . . . . . . . . 13 (𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) → 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8584adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8685oveq2d 7421 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → (𝑃 𝑥) = (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
87 eqid 2735 . . . . . . . . . . . . 13 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8887, 7mgpbas 20105 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
8914fveq2i 6879 . . . . . . . . . . . . 13 (.g𝑉) = (.g‘(mulGrp‘𝐾))
9013, 89eqtri 2758 . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝐾))
9187ringmgp 20199 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
9247, 91syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
9392adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (mulGrp‘𝐾) ∈ Mnd)
9426nnnn0d 12562 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ0)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ∈ ℕ0)
9688, 90, 93, 95, 79mulgnn0cld 19078 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾))
9783, 86, 79, 96fvmptd 6993 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9897eqcomd 2741 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9975simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾))
100 rhmghm 20444 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
10199, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
102101adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
1037, 59, 59ghmlin 19204 . . . . . . . . . . . . 13 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾) ∧ ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝐾) ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))))
104102, 43, 56, 103syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))))
105 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = ((𝑁 / 𝑃) 𝑦) → 𝑥 = ((𝑁 / 𝑃) 𝑦))
106105adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) 𝑦)) → 𝑥 = ((𝑁 / 𝑃) 𝑦))
107106oveq2d 7421 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) 𝑦)) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
10888, 90, 93, 95, 43mulgnn0cld 19078 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) 𝑦)) ∈ (Base‘𝐾))
10983, 107, 43, 108fvmptd 6993 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦)) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
110 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = ((ℤRHom‘𝐾)‘𝐴) → 𝑥 = ((ℤRHom‘𝐾)‘𝐴))
111110oveq2d 7421 . . . . . . . . . . . . . . 15 (𝑥 = ((ℤRHom‘𝐾)‘𝐴) → (𝑃 𝑥) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
112111adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((ℤRHom‘𝐾)‘𝐴)) → (𝑃 𝑥) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
113 aks6d1c1p3.10 . . . . . . . . . . . . . . . . . 18 𝑃 = (chr‘𝐾)
114 eqid 2735 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾)‘𝐴) = ((ℤRHom‘𝐾)‘𝐴)
115113, 7, 90, 114, 24, 54, 10fermltlchr 21490 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 ((ℤRHom‘𝐾)‘𝐴)) = ((ℤRHom‘𝐾)‘𝐴))
116115eqcomd 2741 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
117116adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((ℤRHom‘𝐾)‘𝐴) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
118117, 56eqeltrrd 2835 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
11983, 112, 56, 118fvmptd 6993 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴)) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
120109, 119oveq12d 7423 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
12198, 104, 1203eqtrd 2774 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
12223nncnd 12256 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
123122adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 ∈ ℂ)
12426nncnd 12256 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℂ)
125124adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ∈ ℂ)
12626nnne0d 12290 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ≠ 0)
127126adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ≠ 0)
128123, 125, 127divcan2d 12019 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 · (𝑁 / 𝑃)) = 𝑁)
129128oveq1d 7420 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
13063oveq2d 7421 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
13170oveq2d 7421 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
132130, 131eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
133132eqcomd 2741 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑁 ((𝑂𝐹)‘𝑦)))
134 fveq2 6876 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
135134oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (𝑁 ((𝑂𝐹)‘𝑧)) = (𝑁 ((𝑂𝐹)‘𝑦)))
136 oveq2 7413 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝑁 𝑧) = (𝑁 𝑦))
137136fveq2d 6880 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝑁 𝑧)) = ((𝑂𝐹)‘(𝑁 𝑦)))
138135, 137eqeq12d 2751 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → ((𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)) ↔ (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦))))
1396ply1crng 22134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
14010, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑆 ∈ CRing)
141140crnggrpd 20207 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ∈ Grp)
14244, 6, 8vr1cl 22153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ Ring → 𝑋𝐵)
14347, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋𝐵)
1446, 46, 7, 8ply1sclcl 22223 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
14547, 55, 144syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
146141, 143, 1453jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵))
1478, 58grpcl 18924 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
1491a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
150149eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹𝐵 ↔ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵))
151148, 150mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹𝐵)
15220, 151, 23aks6d1c1p1 42120 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦))))
15321, 152mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)))
154 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑧))
155154oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 ((𝑂𝐹)‘𝑧)))
156 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → (𝑁 𝑦) = (𝑁 𝑧))
157156fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑂𝐹)‘(𝑁 𝑧)))
158155, 157eqeq12d 2751 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → ((𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)) ↔ (𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧))))
159158cbvralvw 3220 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
160153, 159sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
161160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
162 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
163138, 161, 162rspcdva 3602 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)))
1643fveq1d 6878 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)))
16523nnnn0d 12562 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℕ0)
166165adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 ∈ ℕ0)
16712, 13, 18, 166, 37mulgnn0cld 19078 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) ∈ (Base‘𝑉))
168167, 42eleqtrd 2836 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) ∈ (Base‘𝐾))
169143adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑋𝐵)
1705, 44, 7, 6, 8, 11, 168evl1vard 22275 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦)))
171170simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦))
172169, 171jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦)))
173145adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
1745, 6, 7, 46, 8, 11, 56, 168evl1scad 22273 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
175174simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))
176173, 175jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
1775, 6, 7, 8, 11, 168, 172, 176, 58, 59evl1addd 22279 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
178177simprd 495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
179164, 178eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
180163, 179eqtrd 2770 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
181133, 180eqtrd 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
182129, 181eqtrd 2770 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
183128eqcomd 2741 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 = (𝑃 · (𝑁 / 𝑃)))
184183oveq1d 7420 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) = ((𝑃 · (𝑁 / 𝑃)) 𝑦))
185184, 117oveq12d 7423 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
186182, 185eqtr2d 2771 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
18766, 88eleqtrdi 2844 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘(mulGrp‘𝐾)))
18895, 31, 1873jca 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0𝑦 ∈ (Base‘(mulGrp‘𝐾))))
189 eqid 2735 . . . . . . . . . . . . . . . 16 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
190189, 90mulgnn0ass 19093 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0𝑦 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑃 · (𝑁 / 𝑃)) 𝑦) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
19193, 188, 190syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) 𝑦) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
192191oveq1d 7420 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
193186, 192eqtr3d 2772 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
1947, 59, 78, 66, 56grpcld 18930 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
195194, 88eleqtrdi 2844 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾)))
19695, 31, 1953jca 1128 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0 ∧ (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾))))
197189, 90mulgnn0ass 19093 . . . . . . . . . . . . 13 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0 ∧ (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
19893, 196, 197syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
199193, 198eqtr3d 2772 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
200121, 199eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
201 id 22 . . . . . . . . . . . . . 14 (𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → 𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
202201oveq2d 7421 . . . . . . . . . . . . 13 (𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
203202adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
20488, 90, 93, 31, 194mulgnn0cld 19078 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾))
205200, 96eqeltrrd 2835 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) ∈ (Base‘𝐾))
20683, 203, 204, 205fvmptd 6993 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
207206eqcomd 2741 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
20897, 200, 2073eqtrd 2774 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
209208fveq2d 6880 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))))
210 f1ocnvfv1 7269 . . . . . . . . 9 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
21177, 204, 210syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
21282, 209, 2113eqtrd 2774 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
213212eqcomd 2741 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
21472, 213eqtr2d 2771 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)))
21562, 214eqtrd 2770 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)))
216215eqcomd 2741 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)))
217216ralrimiva 3132 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)))
21820, 151, 29aks6d1c1p1 42120 . 2 (𝜑 → ((𝑁 / 𝑃) 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦))))
219217, 218mpbird 257 1 (𝜑 → (𝑁 / 𝑃) 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051   class class class wbr 5119  {copab 5181  cmpt 5201  ccnv 5653  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   · cmul 11134   / cdiv 11894  cn 12240  0cn0 12501  cz 12588  cdvds 16272   gcd cgcd 16513  cprime 16690  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Mndcmnd 18712  Grpcgrp 18916  .gcmg 19050   GrpHom cghm 19195  CMndccmn 19761  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429   RingIso crs 20430  Fieldcfield 20690  ringczring 21407  ℤRHomczrh 21460  chrcchr 21462  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112  eval1ce1 22252   PrimRoots cprimroots 42104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-prm 16691  df-phi 16785  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-od 19509  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-rim 20433  df-subrng 20506  df-subrg 20530  df-drng 20691  df-field 20692  df-lmod 20819  df-lss 20889  df-lsp 20929  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-chr 21466  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-evl1 22254  df-primroots 42105
This theorem is referenced by:  aks6d1c1  42129
  Copyright terms: Public domain W3C validator