Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p3 Structured version   Visualization version   GIF version

Theorem aks6d1c1p3 42093
Description: In a field with a Frobenius isomorphism (read: algebraic closure or finite field), 𝑁 and linear factors are introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p3.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p3.2 𝑆 = (Poly1𝐾)
aks6d1c1p3.3 𝐵 = (Base‘𝑆)
aks6d1c1p3.4 𝑋 = (var1𝐾)
aks6d1c1p3.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p3.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p3.7 = (.g𝑉)
aks6d1c1p3.8 𝐶 = (algSc‘𝑆)
aks6d1c1p3.9 𝐷 = (.g𝑊)
aks6d1c1p3.10 𝑃 = (chr‘𝐾)
aks6d1c1p3.11 𝑂 = (eval1𝐾)
aks6d1c1p3.12 + = (+g𝑆)
aks6d1c1p3.13 (𝜑𝐾 ∈ Field)
aks6d1c1p3.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p3.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p3.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p3.17 (𝜑𝑃𝑁)
aks6d1c1p3.18 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
aks6d1c1p3.19 (𝜑𝐴 ∈ ℤ)
aks6d1c1p3.20 (𝜑𝑁 𝐹)
aks6d1c1p3.21 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
Assertion
Ref Expression
aks6d1c1p3 (𝜑 → (𝑁 / 𝑃) 𝐹)
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝑥, ,𝑦   𝑥,𝐴   𝐵,𝑒,𝑓   𝑒,𝐹,𝑓,𝑦   𝑥,𝐾   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑒,𝑂,𝑓,𝑦   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑒,𝑉,𝑓,𝑦   𝑥,𝑉   𝜑,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑒,𝑓)   𝐷(𝑥,𝑦,𝑒,𝑓)   + (𝑥,𝑦,𝑒,𝑓)   (𝑥,𝑦,𝑒,𝑓)   𝑆(𝑥,𝑦,𝑒,𝑓)   𝐹(𝑥)   𝐾(𝑦,𝑒,𝑓)   𝑂(𝑥)   𝑊(𝑥,𝑦,𝑒,𝑓)   𝑋(𝑥,𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p3
Dummy variables 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p3.18 . . . . . . . . 9 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
21a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
32fveq2d 6826 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂𝐹) = (𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
43fveq1d 6824 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)))
5 aks6d1c1p3.11 . . . . . . . 8 𝑂 = (eval1𝐾)
6 aks6d1c1p3.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
7 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
8 aks6d1c1p3.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
9 aks6d1c1p3.13 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
109fldcrngd 20627 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
1110adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
12 eqid 2729 . . . . . . . . . 10 (Base‘𝑉) = (Base‘𝑉)
13 aks6d1c1p3.7 . . . . . . . . . 10 = (.g𝑉)
14 aks6d1c1p3.6 . . . . . . . . . . . . . 14 𝑉 = (mulGrp‘𝐾)
1514crngmgp 20126 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
1610, 15syl 17 . . . . . . . . . . . 12 (𝜑𝑉 ∈ CMnd)
1716cmnmndd 19683 . . . . . . . . . . 11 (𝜑𝑉 ∈ Mnd)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
19 aks6d1c1p3.17 . . . . . . . . . . . . 13 (𝜑𝑃𝑁)
20 aks6d1c1p3.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
21 aks6d1c1p3.20 . . . . . . . . . . . . . . . 16 (𝜑𝑁 𝐹)
2220, 21aks6d1c1p1rcl 42091 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐹𝐵))
2322simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
24 aks6d1c1p3.14 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℙ)
25 prmnn 16585 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2624, 25syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
27 nndivdvds 16172 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
2823, 26, 27syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
2919, 28mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
3029nnnn0d 12445 . . . . . . . . . . 11 (𝜑 → (𝑁 / 𝑃) ∈ ℕ0)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 / 𝑃) ∈ ℕ0)
32 aks6d1c1p3.15 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℕ)
3332nnnn0d 12445 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ0)
3416, 33, 13isprimroot 42076 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
3534biimpd 229 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
3635imp 406 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙)))
3736simp1d 1142 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
3812, 13, 18, 31, 37mulgnn0cld 18974 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝑉))
3914, 7mgpbas 20030 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝑉)
4039eqcomi 2738 . . . . . . . . . . 11 (Base‘𝑉) = (Base‘𝐾)
4140a1i 11 . . . . . . . . . 10 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
4241adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
4338, 42eleqtrd 2830 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝐾))
44 aks6d1c1p3.4 . . . . . . . . 9 𝑋 = (var1𝐾)
455, 44, 7, 6, 8, 11, 43evl1vard 22222 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘((𝑁 / 𝑃) 𝑦)) = ((𝑁 / 𝑃) 𝑦)))
46 aks6d1c1p3.8 . . . . . . . . 9 𝐶 = (algSc‘𝑆)
4710crngringd 20131 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
48 eqid 2729 . . . . . . . . . . . . 13 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4948zrhrhm 21418 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
50 rhmghm 20369 . . . . . . . . . . . 12 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
51 zringbas 21360 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
5251, 7ghmf 19099 . . . . . . . . . . . 12 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5347, 49, 50, 524syl 19 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
54 aks6d1c1p3.19 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
5553, 54ffvelcdmd 7019 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
5655adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
575, 6, 7, 46, 8, 11, 56, 43evl1scad 22220 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘((𝑁 / 𝑃) 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
58 aks6d1c1p3.12 . . . . . . . 8 + = (+g𝑆)
59 eqid 2729 . . . . . . . 8 (+g𝐾) = (+g𝐾)
605, 6, 7, 8, 11, 43, 45, 57, 58, 59evl1addd 22226 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6160simprd 495 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
624, 61eqtrd 2764 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
633fveq1d 6824 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
6463oveq2d 7365 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑁 / 𝑃) ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
6542eleq2d 2814 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ↔ 𝑦 ∈ (Base‘𝐾)))
6637, 65mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
675, 44, 40, 6, 8, 11, 37evl1vard 22222 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
685, 6, 7, 46, 8, 11, 56, 66evl1scad 22220 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
695, 6, 7, 8, 11, 66, 67, 68, 58, 59evl1addd 22226 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
7069simprd 495 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
7170oveq2d 7365 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
7264, 71eqtrd 2764 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
73 aks6d1c1p3.21 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
747, 7isrim 20377 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾) ↔ ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)))
7573, 74sylib 218 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)))
7675simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7776adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7811crnggrpd 20132 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ Grp)
797, 59, 78, 43, 56grpcld 18826 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
80 f1ocnvfv1 7213 . . . . . . . . . 10 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8177, 79, 80syl2anc 584 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8281eqcomd 2735 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
83 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)))
84 id 22 . . . . . . . . . . . . 13 (𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) → 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8584adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8685oveq2d 7365 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → (𝑃 𝑥) = (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
87 eqid 2729 . . . . . . . . . . . . 13 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8887, 7mgpbas 20030 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
8914fveq2i 6825 . . . . . . . . . . . . 13 (.g𝑉) = (.g‘(mulGrp‘𝐾))
9013, 89eqtri 2752 . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝐾))
9187ringmgp 20124 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
9247, 91syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
9392adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (mulGrp‘𝐾) ∈ Mnd)
9426nnnn0d 12445 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ0)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ∈ ℕ0)
9688, 90, 93, 95, 79mulgnn0cld 18974 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾))
9783, 86, 79, 96fvmptd 6937 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9897eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9975simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾))
100 rhmghm 20369 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
10199, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
102101adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
1037, 59, 59ghmlin 19100 . . . . . . . . . . . . 13 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾) ∧ ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝐾) ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))))
104102, 43, 56, 103syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))))
105 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = ((𝑁 / 𝑃) 𝑦) → 𝑥 = ((𝑁 / 𝑃) 𝑦))
106105adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) 𝑦)) → 𝑥 = ((𝑁 / 𝑃) 𝑦))
107106oveq2d 7365 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) 𝑦)) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
10888, 90, 93, 95, 43mulgnn0cld 18974 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) 𝑦)) ∈ (Base‘𝐾))
10983, 107, 43, 108fvmptd 6937 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦)) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
110 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = ((ℤRHom‘𝐾)‘𝐴) → 𝑥 = ((ℤRHom‘𝐾)‘𝐴))
111110oveq2d 7365 . . . . . . . . . . . . . . 15 (𝑥 = ((ℤRHom‘𝐾)‘𝐴) → (𝑃 𝑥) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
112111adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((ℤRHom‘𝐾)‘𝐴)) → (𝑃 𝑥) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
113 aks6d1c1p3.10 . . . . . . . . . . . . . . . . . 18 𝑃 = (chr‘𝐾)
114 eqid 2729 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾)‘𝐴) = ((ℤRHom‘𝐾)‘𝐴)
115113, 7, 90, 114, 24, 54, 10fermltlchr 21436 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 ((ℤRHom‘𝐾)‘𝐴)) = ((ℤRHom‘𝐾)‘𝐴))
116115eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
117116adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((ℤRHom‘𝐾)‘𝐴) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
118117, 56eqeltrrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
11983, 112, 56, 118fvmptd 6937 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴)) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
120109, 119oveq12d 7367 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
12198, 104, 1203eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
12223nncnd 12144 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
123122adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 ∈ ℂ)
12426nncnd 12144 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℂ)
125124adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ∈ ℂ)
12626nnne0d 12178 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ≠ 0)
127126adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ≠ 0)
128123, 125, 127divcan2d 11902 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 · (𝑁 / 𝑃)) = 𝑁)
129128oveq1d 7364 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
13063oveq2d 7365 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
13170oveq2d 7365 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
132130, 131eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
133132eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑁 ((𝑂𝐹)‘𝑦)))
134 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
135134oveq2d 7365 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (𝑁 ((𝑂𝐹)‘𝑧)) = (𝑁 ((𝑂𝐹)‘𝑦)))
136 oveq2 7357 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝑁 𝑧) = (𝑁 𝑦))
137136fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝑁 𝑧)) = ((𝑂𝐹)‘(𝑁 𝑦)))
138135, 137eqeq12d 2745 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → ((𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)) ↔ (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦))))
1396ply1crng 22081 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
14010, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑆 ∈ CRing)
141140crnggrpd 20132 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ∈ Grp)
14244, 6, 8vr1cl 22100 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ Ring → 𝑋𝐵)
14347, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋𝐵)
1446, 46, 7, 8ply1sclcl 22170 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
14547, 55, 144syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
146141, 143, 1453jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵))
1478, 58grpcl 18820 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
1491a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
150149eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹𝐵 ↔ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵))
151148, 150mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹𝐵)
15220, 151, 23aks6d1c1p1 42090 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦))))
15321, 152mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)))
154 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑧))
155154oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 ((𝑂𝐹)‘𝑧)))
156 oveq2 7357 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → (𝑁 𝑦) = (𝑁 𝑧))
157156fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑂𝐹)‘(𝑁 𝑧)))
158155, 157eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → ((𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)) ↔ (𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧))))
159158cbvralvw 3207 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
160153, 159sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
161160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
162 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
163138, 161, 162rspcdva 3578 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)))
1643fveq1d 6824 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)))
16523nnnn0d 12445 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℕ0)
166165adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 ∈ ℕ0)
16712, 13, 18, 166, 37mulgnn0cld 18974 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) ∈ (Base‘𝑉))
168167, 42eleqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) ∈ (Base‘𝐾))
169143adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑋𝐵)
1705, 44, 7, 6, 8, 11, 168evl1vard 22222 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦)))
171170simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦))
172169, 171jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦)))
173145adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
1745, 6, 7, 46, 8, 11, 56, 168evl1scad 22220 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
175174simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))
176173, 175jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
1775, 6, 7, 8, 11, 168, 172, 176, 58, 59evl1addd 22226 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
178177simprd 495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
179164, 178eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
180163, 179eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
181133, 180eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
182129, 181eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
183128eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 = (𝑃 · (𝑁 / 𝑃)))
184183oveq1d 7364 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) = ((𝑃 · (𝑁 / 𝑃)) 𝑦))
185184, 117oveq12d 7367 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
186182, 185eqtr2d 2765 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
18766, 88eleqtrdi 2838 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘(mulGrp‘𝐾)))
18895, 31, 1873jca 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0𝑦 ∈ (Base‘(mulGrp‘𝐾))))
189 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
190189, 90mulgnn0ass 18989 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0𝑦 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑃 · (𝑁 / 𝑃)) 𝑦) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
19193, 188, 190syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) 𝑦) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
192191oveq1d 7364 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
193186, 192eqtr3d 2766 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
1947, 59, 78, 66, 56grpcld 18826 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
195194, 88eleqtrdi 2838 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾)))
19695, 31, 1953jca 1128 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0 ∧ (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾))))
197189, 90mulgnn0ass 18989 . . . . . . . . . . . . 13 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0 ∧ (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
19893, 196, 197syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
199193, 198eqtr3d 2766 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
200121, 199eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
201 id 22 . . . . . . . . . . . . . 14 (𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → 𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
202201oveq2d 7365 . . . . . . . . . . . . 13 (𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
203202adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
20488, 90, 93, 31, 194mulgnn0cld 18974 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾))
205200, 96eqeltrrd 2829 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) ∈ (Base‘𝐾))
20683, 203, 204, 205fvmptd 6937 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
207206eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
20897, 200, 2073eqtrd 2768 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
209208fveq2d 6826 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))))
210 f1ocnvfv1 7213 . . . . . . . . 9 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
21177, 204, 210syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
21282, 209, 2113eqtrd 2768 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
213212eqcomd 2735 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
21472, 213eqtr2d 2765 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)))
21562, 214eqtrd 2764 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)))
216215eqcomd 2735 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)))
217216ralrimiva 3121 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)))
21820, 151, 29aks6d1c1p1 42090 . 2 (𝜑 → ((𝑁 / 𝑃) 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦))))
219217, 218mpbird 257 1 (𝜑 → (𝑁 / 𝑃) 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5092  {copab 5154  cmpt 5173  ccnv 5618  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   · cmul 11014   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  cdvds 16163   gcd cgcd 16405  cprime 16582  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18608  Grpcgrp 18812  .gcmg 18946   GrpHom cghm 19091  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354   RingIso crs 20355  Fieldcfield 20615  ringczring 21353  ℤRHomczrh 21406  chrcchr 21408  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  eval1ce1 22199   PrimRoots cprimroots 42074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-od 19407  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-rim 20358  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-chr 21412  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-evl1 22201  df-primroots 42075
This theorem is referenced by:  aks6d1c1  42099
  Copyright terms: Public domain W3C validator