Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p3 Structured version   Visualization version   GIF version

Theorem aks6d1c1p3 42091
Description: In a field with a Frobenius isomorphism (read: algebraic closure or finite field), 𝑁 and linear factors are introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p3.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p3.2 𝑆 = (Poly1𝐾)
aks6d1c1p3.3 𝐵 = (Base‘𝑆)
aks6d1c1p3.4 𝑋 = (var1𝐾)
aks6d1c1p3.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p3.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p3.7 = (.g𝑉)
aks6d1c1p3.8 𝐶 = (algSc‘𝑆)
aks6d1c1p3.9 𝐷 = (.g𝑊)
aks6d1c1p3.10 𝑃 = (chr‘𝐾)
aks6d1c1p3.11 𝑂 = (eval1𝐾)
aks6d1c1p3.12 + = (+g𝑆)
aks6d1c1p3.13 (𝜑𝐾 ∈ Field)
aks6d1c1p3.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p3.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p3.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p3.17 (𝜑𝑃𝑁)
aks6d1c1p3.18 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
aks6d1c1p3.19 (𝜑𝐴 ∈ ℤ)
aks6d1c1p3.20 (𝜑𝑁 𝐹)
aks6d1c1p3.21 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
Assertion
Ref Expression
aks6d1c1p3 (𝜑 → (𝑁 / 𝑃) 𝐹)
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝑥, ,𝑦   𝑥,𝐴   𝐵,𝑒,𝑓   𝑒,𝐹,𝑓,𝑦   𝑥,𝐾   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑒,𝑂,𝑓,𝑦   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑒,𝑉,𝑓,𝑦   𝑥,𝑉   𝜑,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑒,𝑓)   𝐷(𝑥,𝑦,𝑒,𝑓)   + (𝑥,𝑦,𝑒,𝑓)   (𝑥,𝑦,𝑒,𝑓)   𝑆(𝑥,𝑦,𝑒,𝑓)   𝐹(𝑥)   𝐾(𝑦,𝑒,𝑓)   𝑂(𝑥)   𝑊(𝑥,𝑦,𝑒,𝑓)   𝑋(𝑥,𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p3
Dummy variables 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p3.18 . . . . . . . . 9 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
21a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
32fveq2d 6844 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂𝐹) = (𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
43fveq1d 6842 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)))
5 aks6d1c1p3.11 . . . . . . . 8 𝑂 = (eval1𝐾)
6 aks6d1c1p3.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
7 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
8 aks6d1c1p3.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
9 aks6d1c1p3.13 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
109fldcrngd 20662 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
1110adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
12 eqid 2729 . . . . . . . . . 10 (Base‘𝑉) = (Base‘𝑉)
13 aks6d1c1p3.7 . . . . . . . . . 10 = (.g𝑉)
14 aks6d1c1p3.6 . . . . . . . . . . . . . 14 𝑉 = (mulGrp‘𝐾)
1514crngmgp 20161 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
1610, 15syl 17 . . . . . . . . . . . 12 (𝜑𝑉 ∈ CMnd)
1716cmnmndd 19718 . . . . . . . . . . 11 (𝜑𝑉 ∈ Mnd)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
19 aks6d1c1p3.17 . . . . . . . . . . . . 13 (𝜑𝑃𝑁)
20 aks6d1c1p3.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
21 aks6d1c1p3.20 . . . . . . . . . . . . . . . 16 (𝜑𝑁 𝐹)
2220, 21aks6d1c1p1rcl 42089 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐹𝐵))
2322simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
24 aks6d1c1p3.14 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℙ)
25 prmnn 16620 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2624, 25syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
27 nndivdvds 16207 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
2823, 26, 27syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
2919, 28mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
3029nnnn0d 12479 . . . . . . . . . . 11 (𝜑 → (𝑁 / 𝑃) ∈ ℕ0)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 / 𝑃) ∈ ℕ0)
32 aks6d1c1p3.15 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℕ)
3332nnnn0d 12479 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ0)
3416, 33, 13isprimroot 42074 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
3534biimpd 229 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
3635imp 406 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙)))
3736simp1d 1142 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
3812, 13, 18, 31, 37mulgnn0cld 19009 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝑉))
3914, 7mgpbas 20065 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝑉)
4039eqcomi 2738 . . . . . . . . . . 11 (Base‘𝑉) = (Base‘𝐾)
4140a1i 11 . . . . . . . . . 10 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
4241adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
4338, 42eleqtrd 2830 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝐾))
44 aks6d1c1p3.4 . . . . . . . . 9 𝑋 = (var1𝐾)
455, 44, 7, 6, 8, 11, 43evl1vard 22257 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘((𝑁 / 𝑃) 𝑦)) = ((𝑁 / 𝑃) 𝑦)))
46 aks6d1c1p3.8 . . . . . . . . 9 𝐶 = (algSc‘𝑆)
4710crngringd 20166 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
48 eqid 2729 . . . . . . . . . . . . 13 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4948zrhrhm 21453 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
50 rhmghm 20404 . . . . . . . . . . . 12 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
51 zringbas 21395 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
5251, 7ghmf 19134 . . . . . . . . . . . 12 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5347, 49, 50, 524syl 19 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
54 aks6d1c1p3.19 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
5553, 54ffvelcdmd 7039 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
5655adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
575, 6, 7, 46, 8, 11, 56, 43evl1scad 22255 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘((𝑁 / 𝑃) 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
58 aks6d1c1p3.12 . . . . . . . 8 + = (+g𝑆)
59 eqid 2729 . . . . . . . 8 (+g𝐾) = (+g𝐾)
605, 6, 7, 8, 11, 43, 45, 57, 58, 59evl1addd 22261 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6160simprd 495 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
624, 61eqtrd 2764 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
633fveq1d 6842 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
6463oveq2d 7385 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑁 / 𝑃) ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
6542eleq2d 2814 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ↔ 𝑦 ∈ (Base‘𝐾)))
6637, 65mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
675, 44, 40, 6, 8, 11, 37evl1vard 22257 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
685, 6, 7, 46, 8, 11, 56, 66evl1scad 22255 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
695, 6, 7, 8, 11, 66, 67, 68, 58, 59evl1addd 22261 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
7069simprd 495 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
7170oveq2d 7385 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
7264, 71eqtrd 2764 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
73 aks6d1c1p3.21 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
747, 7isrim 20412 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾) ↔ ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)))
7573, 74sylib 218 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)))
7675simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7776adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7811crnggrpd 20167 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ Grp)
797, 59, 78, 43, 56grpcld 18861 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
80 f1ocnvfv1 7233 . . . . . . . . . 10 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8177, 79, 80syl2anc 584 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8281eqcomd 2735 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
83 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)))
84 id 22 . . . . . . . . . . . . 13 (𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) → 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8584adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8685oveq2d 7385 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → (𝑃 𝑥) = (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
87 eqid 2729 . . . . . . . . . . . . 13 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8887, 7mgpbas 20065 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
8914fveq2i 6843 . . . . . . . . . . . . 13 (.g𝑉) = (.g‘(mulGrp‘𝐾))
9013, 89eqtri 2752 . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝐾))
9187ringmgp 20159 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
9247, 91syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
9392adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (mulGrp‘𝐾) ∈ Mnd)
9426nnnn0d 12479 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ0)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ∈ ℕ0)
9688, 90, 93, 95, 79mulgnn0cld 19009 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾))
9783, 86, 79, 96fvmptd 6957 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9897eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9975simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾))
100 rhmghm 20404 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
10199, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
102101adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
1037, 59, 59ghmlin 19135 . . . . . . . . . . . . 13 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾) ∧ ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝐾) ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))))
104102, 43, 56, 103syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))))
105 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = ((𝑁 / 𝑃) 𝑦) → 𝑥 = ((𝑁 / 𝑃) 𝑦))
106105adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) 𝑦)) → 𝑥 = ((𝑁 / 𝑃) 𝑦))
107106oveq2d 7385 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) 𝑦)) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
10888, 90, 93, 95, 43mulgnn0cld 19009 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) 𝑦)) ∈ (Base‘𝐾))
10983, 107, 43, 108fvmptd 6957 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦)) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
110 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = ((ℤRHom‘𝐾)‘𝐴) → 𝑥 = ((ℤRHom‘𝐾)‘𝐴))
111110oveq2d 7385 . . . . . . . . . . . . . . 15 (𝑥 = ((ℤRHom‘𝐾)‘𝐴) → (𝑃 𝑥) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
112111adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((ℤRHom‘𝐾)‘𝐴)) → (𝑃 𝑥) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
113 aks6d1c1p3.10 . . . . . . . . . . . . . . . . . 18 𝑃 = (chr‘𝐾)
114 eqid 2729 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾)‘𝐴) = ((ℤRHom‘𝐾)‘𝐴)
115113, 7, 90, 114, 24, 54, 10fermltlchr 21471 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 ((ℤRHom‘𝐾)‘𝐴)) = ((ℤRHom‘𝐾)‘𝐴))
116115eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
117116adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((ℤRHom‘𝐾)‘𝐴) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
118117, 56eqeltrrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
11983, 112, 56, 118fvmptd 6957 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴)) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
120109, 119oveq12d 7387 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
12198, 104, 1203eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
12223nncnd 12178 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
123122adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 ∈ ℂ)
12426nncnd 12178 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℂ)
125124adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ∈ ℂ)
12626nnne0d 12212 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ≠ 0)
127126adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ≠ 0)
128123, 125, 127divcan2d 11936 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 · (𝑁 / 𝑃)) = 𝑁)
129128oveq1d 7384 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
13063oveq2d 7385 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
13170oveq2d 7385 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
132130, 131eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
133132eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑁 ((𝑂𝐹)‘𝑦)))
134 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
135134oveq2d 7385 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (𝑁 ((𝑂𝐹)‘𝑧)) = (𝑁 ((𝑂𝐹)‘𝑦)))
136 oveq2 7377 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝑁 𝑧) = (𝑁 𝑦))
137136fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝑁 𝑧)) = ((𝑂𝐹)‘(𝑁 𝑦)))
138135, 137eqeq12d 2745 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → ((𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)) ↔ (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦))))
1396ply1crng 22116 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
14010, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑆 ∈ CRing)
141140crnggrpd 20167 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ∈ Grp)
14244, 6, 8vr1cl 22135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ Ring → 𝑋𝐵)
14347, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋𝐵)
1446, 46, 7, 8ply1sclcl 22205 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
14547, 55, 144syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
146141, 143, 1453jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵))
1478, 58grpcl 18855 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
1491a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
150149eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹𝐵 ↔ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵))
151148, 150mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹𝐵)
15220, 151, 23aks6d1c1p1 42088 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦))))
15321, 152mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)))
154 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑧))
155154oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 ((𝑂𝐹)‘𝑧)))
156 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → (𝑁 𝑦) = (𝑁 𝑧))
157156fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑂𝐹)‘(𝑁 𝑧)))
158155, 157eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → ((𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)) ↔ (𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧))))
159158cbvralvw 3213 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
160153, 159sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
161160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
162 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
163138, 161, 162rspcdva 3586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)))
1643fveq1d 6842 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)))
16523nnnn0d 12479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℕ0)
166165adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 ∈ ℕ0)
16712, 13, 18, 166, 37mulgnn0cld 19009 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) ∈ (Base‘𝑉))
168167, 42eleqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) ∈ (Base‘𝐾))
169143adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑋𝐵)
1705, 44, 7, 6, 8, 11, 168evl1vard 22257 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦)))
171170simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦))
172169, 171jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦)))
173145adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
1745, 6, 7, 46, 8, 11, 56, 168evl1scad 22255 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
175174simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))
176173, 175jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
1775, 6, 7, 8, 11, 168, 172, 176, 58, 59evl1addd 22261 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
178177simprd 495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
179164, 178eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
180163, 179eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
181133, 180eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
182129, 181eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
183128eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 = (𝑃 · (𝑁 / 𝑃)))
184183oveq1d 7384 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) = ((𝑃 · (𝑁 / 𝑃)) 𝑦))
185184, 117oveq12d 7387 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
186182, 185eqtr2d 2765 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
18766, 88eleqtrdi 2838 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘(mulGrp‘𝐾)))
18895, 31, 1873jca 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0𝑦 ∈ (Base‘(mulGrp‘𝐾))))
189 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
190189, 90mulgnn0ass 19024 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0𝑦 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑃 · (𝑁 / 𝑃)) 𝑦) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
19193, 188, 190syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) 𝑦) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
192191oveq1d 7384 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
193186, 192eqtr3d 2766 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
1947, 59, 78, 66, 56grpcld 18861 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
195194, 88eleqtrdi 2838 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾)))
19695, 31, 1953jca 1128 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0 ∧ (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾))))
197189, 90mulgnn0ass 19024 . . . . . . . . . . . . 13 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0 ∧ (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
19893, 196, 197syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
199193, 198eqtr3d 2766 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
200121, 199eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
201 id 22 . . . . . . . . . . . . . 14 (𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → 𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
202201oveq2d 7385 . . . . . . . . . . . . 13 (𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
203202adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
20488, 90, 93, 31, 194mulgnn0cld 19009 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾))
205200, 96eqeltrrd 2829 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) ∈ (Base‘𝐾))
20683, 203, 204, 205fvmptd 6957 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
207206eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
20897, 200, 2073eqtrd 2768 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
209208fveq2d 6844 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))))
210 f1ocnvfv1 7233 . . . . . . . . 9 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
21177, 204, 210syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
21282, 209, 2113eqtrd 2768 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
213212eqcomd 2735 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
21472, 213eqtr2d 2765 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)))
21562, 214eqtrd 2764 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)))
216215eqcomd 2735 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)))
217216ralrimiva 3125 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)))
21820, 151, 29aks6d1c1p1 42088 . 2 (𝜑 → ((𝑁 / 𝑃) 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦))))
219217, 218mpbird 257 1 (𝜑 → (𝑁 / 𝑃) 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5102  {copab 5164  cmpt 5183  ccnv 5630  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   · cmul 11049   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  cdvds 16198   gcd cgcd 16440  cprime 16617  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Mndcmnd 18643  Grpcgrp 18847  .gcmg 18981   GrpHom cghm 19126  CMndccmn 19694  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154   RingHom crh 20389   RingIso crs 20390  Fieldcfield 20650  ringczring 21388  ℤRHomczrh 21441  chrcchr 21443  algSccascl 21794  var1cv1 22093  Poly1cpl1 22094  eval1ce1 22234   PrimRoots cprimroots 42072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-od 19442  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-rim 20393  df-subrng 20466  df-subrg 20490  df-drng 20651  df-field 20652  df-lmod 20800  df-lss 20870  df-lsp 20910  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-chr 21447  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-evl1 22236  df-primroots 42073
This theorem is referenced by:  aks6d1c1  42097
  Copyright terms: Public domain W3C validator