Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p3 Structured version   Visualization version   GIF version

Theorem aks6d1c1p3 42098
Description: In a field with a Frobenius isomorphism (read: algebraic closure or finite field), 𝑁 and linear factors are introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p3.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p3.2 𝑆 = (Poly1𝐾)
aks6d1c1p3.3 𝐵 = (Base‘𝑆)
aks6d1c1p3.4 𝑋 = (var1𝐾)
aks6d1c1p3.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p3.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p3.7 = (.g𝑉)
aks6d1c1p3.8 𝐶 = (algSc‘𝑆)
aks6d1c1p3.9 𝐷 = (.g𝑊)
aks6d1c1p3.10 𝑃 = (chr‘𝐾)
aks6d1c1p3.11 𝑂 = (eval1𝐾)
aks6d1c1p3.12 + = (+g𝑆)
aks6d1c1p3.13 (𝜑𝐾 ∈ Field)
aks6d1c1p3.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p3.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p3.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p3.17 (𝜑𝑃𝑁)
aks6d1c1p3.18 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
aks6d1c1p3.19 (𝜑𝐴 ∈ ℤ)
aks6d1c1p3.20 (𝜑𝑁 𝐹)
aks6d1c1p3.21 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
Assertion
Ref Expression
aks6d1c1p3 (𝜑 → (𝑁 / 𝑃) 𝐹)
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝑥, ,𝑦   𝑥,𝐴   𝐵,𝑒,𝑓   𝑒,𝐹,𝑓,𝑦   𝑥,𝐾   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑒,𝑂,𝑓,𝑦   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑒,𝑉,𝑓,𝑦   𝑥,𝑉   𝜑,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑒,𝑓)   𝐷(𝑥,𝑦,𝑒,𝑓)   + (𝑥,𝑦,𝑒,𝑓)   (𝑥,𝑦,𝑒,𝑓)   𝑆(𝑥,𝑦,𝑒,𝑓)   𝐹(𝑥)   𝐾(𝑦,𝑒,𝑓)   𝑂(𝑥)   𝑊(𝑥,𝑦,𝑒,𝑓)   𝑋(𝑥,𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p3
Dummy variables 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p3.18 . . . . . . . . 9 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))
21a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
32fveq2d 6862 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂𝐹) = (𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴)))))
43fveq1d 6860 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)))
5 aks6d1c1p3.11 . . . . . . . 8 𝑂 = (eval1𝐾)
6 aks6d1c1p3.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
7 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
8 aks6d1c1p3.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
9 aks6d1c1p3.13 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
109fldcrngd 20651 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
1110adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
12 eqid 2729 . . . . . . . . . 10 (Base‘𝑉) = (Base‘𝑉)
13 aks6d1c1p3.7 . . . . . . . . . 10 = (.g𝑉)
14 aks6d1c1p3.6 . . . . . . . . . . . . . 14 𝑉 = (mulGrp‘𝐾)
1514crngmgp 20150 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
1610, 15syl 17 . . . . . . . . . . . 12 (𝜑𝑉 ∈ CMnd)
1716cmnmndd 19734 . . . . . . . . . . 11 (𝜑𝑉 ∈ Mnd)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
19 aks6d1c1p3.17 . . . . . . . . . . . . 13 (𝜑𝑃𝑁)
20 aks6d1c1p3.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
21 aks6d1c1p3.20 . . . . . . . . . . . . . . . 16 (𝜑𝑁 𝐹)
2220, 21aks6d1c1p1rcl 42096 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐹𝐵))
2322simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
24 aks6d1c1p3.14 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℙ)
25 prmnn 16644 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2624, 25syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
27 nndivdvds 16231 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
2823, 26, 27syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
2919, 28mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
3029nnnn0d 12503 . . . . . . . . . . 11 (𝜑 → (𝑁 / 𝑃) ∈ ℕ0)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 / 𝑃) ∈ ℕ0)
32 aks6d1c1p3.15 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℕ)
3332nnnn0d 12503 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ0)
3416, 33, 13isprimroot 42081 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
3534biimpd 229 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙))))
3635imp 406 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑦) = (0g𝑉) → 𝑅𝑙)))
3736simp1d 1142 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
3812, 13, 18, 31, 37mulgnn0cld 19027 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝑉))
3914, 7mgpbas 20054 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝑉)
4039eqcomi 2738 . . . . . . . . . . 11 (Base‘𝑉) = (Base‘𝐾)
4140a1i 11 . . . . . . . . . 10 (𝜑 → (Base‘𝑉) = (Base‘𝐾))
4241adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝑉) = (Base‘𝐾))
4338, 42eleqtrd 2830 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝐾))
44 aks6d1c1p3.4 . . . . . . . . 9 𝑋 = (var1𝐾)
455, 44, 7, 6, 8, 11, 43evl1vard 22224 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘((𝑁 / 𝑃) 𝑦)) = ((𝑁 / 𝑃) 𝑦)))
46 aks6d1c1p3.8 . . . . . . . . 9 𝐶 = (algSc‘𝑆)
4710crngringd 20155 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
48 eqid 2729 . . . . . . . . . . . . 13 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4948zrhrhm 21421 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
50 rhmghm 20393 . . . . . . . . . . . 12 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
51 zringbas 21363 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
5251, 7ghmf 19152 . . . . . . . . . . . 12 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5347, 49, 50, 524syl 19 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
54 aks6d1c1p3.19 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
5553, 54ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
5655adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾))
575, 6, 7, 46, 8, 11, 56, 43evl1scad 22222 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘((𝑁 / 𝑃) 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
58 aks6d1c1p3.12 . . . . . . . 8 + = (+g𝑆)
59 eqid 2729 . . . . . . . 8 (+g𝐾) = (+g𝐾)
605, 6, 7, 8, 11, 43, 45, 57, 58, 59evl1addd 22228 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
6160simprd 495 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
624, 61eqtrd 2764 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
633fveq1d 6860 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦))
6463oveq2d 7403 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑁 / 𝑃) ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
6542eleq2d 2814 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ↔ 𝑦 ∈ (Base‘𝐾)))
6637, 65mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
675, 44, 40, 6, 8, 11, 37evl1vard 22224 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑦) = 𝑦))
685, 6, 7, 46, 8, 11, 56, 66evl1scad 22222 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘𝑦) = ((ℤRHom‘𝐾)‘𝐴)))
695, 6, 7, 8, 11, 66, 67, 68, 58, 59evl1addd 22228 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
7069simprd 495 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦) = (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
7170oveq2d 7403 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
7264, 71eqtrd 2764 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
73 aks6d1c1p3.21 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
747, 7isrim 20401 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾) ↔ ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)))
7573, 74sylib 218 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)))
7675simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7776adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7811crnggrpd 20156 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ Grp)
797, 59, 78, 43, 56grpcld 18879 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
80 f1ocnvfv1 7251 . . . . . . . . . 10 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8177, 79, 80syl2anc 584 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8281eqcomd 2735 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
83 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)))
84 id 22 . . . . . . . . . . . . 13 (𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) → 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8584adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
8685oveq2d 7403 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → (𝑃 𝑥) = (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
87 eqid 2729 . . . . . . . . . . . . 13 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8887, 7mgpbas 20054 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
8914fveq2i 6861 . . . . . . . . . . . . 13 (.g𝑉) = (.g‘(mulGrp‘𝐾))
9013, 89eqtri 2752 . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝐾))
9187ringmgp 20148 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
9247, 91syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
9392adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (mulGrp‘𝐾) ∈ Mnd)
9426nnnn0d 12503 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ0)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ∈ ℕ0)
9688, 90, 93, 95, 79mulgnn0cld 19027 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾))
9783, 86, 79, 96fvmptd 6975 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9897eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
9975simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾))
100 rhmghm 20393 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingHom 𝐾) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
10199, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
102101adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾))
1037, 59, 59ghmlin 19153 . . . . . . . . . . . . 13 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 GrpHom 𝐾) ∧ ((𝑁 / 𝑃) 𝑦) ∈ (Base‘𝐾) ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))))
104102, 43, 56, 103syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))))
105 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = ((𝑁 / 𝑃) 𝑦) → 𝑥 = ((𝑁 / 𝑃) 𝑦))
106105adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) 𝑦)) → 𝑥 = ((𝑁 / 𝑃) 𝑦))
107106oveq2d 7403 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) 𝑦)) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
10888, 90, 93, 95, 43mulgnn0cld 19027 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) 𝑦)) ∈ (Base‘𝐾))
10983, 107, 43, 108fvmptd 6975 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦)) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
110 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = ((ℤRHom‘𝐾)‘𝐴) → 𝑥 = ((ℤRHom‘𝐾)‘𝐴))
111110oveq2d 7403 . . . . . . . . . . . . . . 15 (𝑥 = ((ℤRHom‘𝐾)‘𝐴) → (𝑃 𝑥) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
112111adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((ℤRHom‘𝐾)‘𝐴)) → (𝑃 𝑥) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
113 aks6d1c1p3.10 . . . . . . . . . . . . . . . . . 18 𝑃 = (chr‘𝐾)
114 eqid 2729 . . . . . . . . . . . . . . . . . 18 ((ℤRHom‘𝐾)‘𝐴) = ((ℤRHom‘𝐾)‘𝐴)
115113, 7, 90, 114, 24, 54, 10fermltlchr 21439 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 ((ℤRHom‘𝐾)‘𝐴)) = ((ℤRHom‘𝐾)‘𝐴))
116115eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℤRHom‘𝐾)‘𝐴) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
117116adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((ℤRHom‘𝐾)‘𝐴) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
118117, 56eqeltrrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
11983, 112, 56, 118fvmptd 6975 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴)) = (𝑃 ((ℤRHom‘𝐾)‘𝐴)))
120109, 119oveq12d 7405 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) 𝑦))(+g𝐾)((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
12198, 104, 1203eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
12223nncnd 12202 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
123122adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 ∈ ℂ)
12426nncnd 12202 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℂ)
125124adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ∈ ℂ)
12626nnne0d 12236 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ≠ 0)
127126adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑃 ≠ 0)
128123, 125, 127divcan2d 11960 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 · (𝑁 / 𝑃)) = 𝑁)
129128oveq1d 7402 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
13063oveq2d 7403 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)))
13170oveq2d 7403 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘𝑦)) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
132130, 131eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
133132eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑁 ((𝑂𝐹)‘𝑦)))
134 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
135134oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (𝑁 ((𝑂𝐹)‘𝑧)) = (𝑁 ((𝑂𝐹)‘𝑦)))
136 oveq2 7395 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝑁 𝑧) = (𝑁 𝑦))
137136fveq2d 6862 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝑁 𝑧)) = ((𝑂𝐹)‘(𝑁 𝑦)))
138135, 137eqeq12d 2745 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → ((𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)) ↔ (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦))))
1396ply1crng 22083 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
14010, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑆 ∈ CRing)
141140crnggrpd 20156 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ∈ Grp)
14244, 6, 8vr1cl 22102 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ Ring → 𝑋𝐵)
14347, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋𝐵)
1446, 46, 7, 8ply1sclcl 22172 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
14547, 55, 144syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
146141, 143, 1453jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵))
1478, 58grpcl 18873 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵)
1491a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))
150149eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹𝐵 ↔ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵))
151148, 150mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹𝐵)
15220, 151, 23aks6d1c1p1 42095 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦))))
15321, 152mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)))
154 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑧))
155154oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → (𝑁 ((𝑂𝐹)‘𝑦)) = (𝑁 ((𝑂𝐹)‘𝑧)))
156 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → (𝑁 𝑦) = (𝑁 𝑧))
157156fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑂𝐹)‘(𝑁 𝑧)))
158155, 157eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → ((𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)) ↔ (𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧))))
159158cbvralvw 3215 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
160153, 159sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
161160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝑁 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝑁 𝑧)))
162 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
163138, 161, 162rspcdva 3589 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝑁 𝑦)))
1643fveq1d 6860 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)))
16523nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℕ0)
166165adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 ∈ ℕ0)
16712, 13, 18, 166, 37mulgnn0cld 19027 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) ∈ (Base‘𝑉))
168167, 42eleqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) ∈ (Base‘𝐾))
169143adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑋𝐵)
1705, 44, 7, 6, 8, 11, 168evl1vard 22224 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦)))
171170simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦))
172169, 171jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝑁 𝑦)) = (𝑁 𝑦)))
173145adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵)
1745, 6, 7, 46, 8, 11, 56, 168evl1scad 22222 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
175174simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴))
176173, 175jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘((ℤRHom‘𝐾)‘𝐴)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁 𝑦)) = ((ℤRHom‘𝐾)‘𝐴)))
1775, 6, 7, 8, 11, 168, 172, 176, 58, 59evl1addd 22228 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))) ∈ 𝐵 ∧ ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
178177simprd 495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
179164, 178eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝑁 𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
180163, 179eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 ((𝑂𝐹)‘𝑦)) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
181133, 180eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
182129, 181eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
183128eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑁 = (𝑃 · (𝑁 / 𝑃)))
184183oveq1d 7402 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑁 𝑦) = ((𝑃 · (𝑁 / 𝑃)) 𝑦))
185184, 117oveq12d 7405 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
186182, 185eqtr2d 2765 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
18766, 88eleqtrdi 2838 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘(mulGrp‘𝐾)))
18895, 31, 1873jca 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0𝑦 ∈ (Base‘(mulGrp‘𝐾))))
189 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
190189, 90mulgnn0ass 19042 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0𝑦 ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑃 · (𝑁 / 𝑃)) 𝑦) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
19193, 188, 190syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) 𝑦) = (𝑃 ((𝑁 / 𝑃) 𝑦)))
192191oveq1d 7402 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑃 · (𝑁 / 𝑃)) 𝑦)(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
193186, 192eqtr3d 2766 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))))
1947, 59, 78, 66, 56grpcld 18879 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘𝐾))
195194, 88eleqtrdi 2838 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾)))
19695, 31, 1953jca 1128 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0 ∧ (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾))))
197189, 90mulgnn0ass 19042 . . . . . . . . . . . . 13 (((mulGrp‘𝐾) ∈ Mnd ∧ (𝑃 ∈ ℕ0 ∧ (𝑁 / 𝑃) ∈ ℕ0 ∧ (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) ∈ (Base‘(mulGrp‘𝐾)))) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
19893, 196, 197syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 · (𝑁 / 𝑃)) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
199193, 198eqtr3d 2766 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑃 ((𝑁 / 𝑃) 𝑦))(+g𝐾)(𝑃 ((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
200121, 199eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
201 id 22 . . . . . . . . . . . . . 14 (𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → 𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
202201oveq2d 7403 . . . . . . . . . . . . 13 (𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
203202adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) ∧ 𝑥 = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) → (𝑃 𝑥) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
20488, 90, 93, 31, 194mulgnn0cld 19027 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾))
205200, 96eqeltrrd 2829 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) ∈ (Base‘𝐾))
20683, 203, 204, 205fvmptd 6975 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
207206eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑃 ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
20897, 200, 2073eqtrd 2768 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))))
209208fveq2d 6862 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘(((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))) = ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))))
210 f1ocnvfv1 7251 . . . . . . . . 9 (((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) ∈ (Base‘𝐾)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
21177, 204, 210syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥))‘((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
21282, 209, 2113eqtrd 2768 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))))
213212eqcomd 2735 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) (𝑦(+g𝐾)((ℤRHom‘𝐾)‘𝐴))) = (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)))
21472, 213eqtr2d 2765 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑁 / 𝑃) 𝑦)(+g𝐾)((ℤRHom‘𝐾)‘𝐴)) = ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)))
21562, 214eqtrd 2764 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)) = ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)))
216215eqcomd 2735 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)))
217216ralrimiva 3125 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦)))
21820, 151, 29aks6d1c1p1 42095 . 2 (𝜑 → ((𝑁 / 𝑃) 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)((𝑁 / 𝑃) ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘((𝑁 / 𝑃) 𝑦))))
219217, 218mpbird 257 1 (𝜑 → (𝑁 / 𝑃) 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5107  {copab 5169  cmpt 5188  ccnv 5637  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   · cmul 11073   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cdvds 16222   gcd cgcd 16464  cprime 16641  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661  Grpcgrp 18865  .gcmg 18999   GrpHom cghm 19144  CMndccmn 19710  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378   RingIso crs 20379  Fieldcfield 20639  ringczring 21356  ℤRHomczrh 21409  chrcchr 21411  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  eval1ce1 22201   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-rim 20382  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-chr 21415  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-evl1 22203  df-primroots 42080
This theorem is referenced by:  aks6d1c1  42104
  Copyright terms: Public domain W3C validator