Proof of Theorem aks6d1c1p1
| Step | Hyp | Ref
| Expression |
| 1 | | aks6d1c1p1.3 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ ℕ) |
| 2 | | aks6d1c1p1.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 3 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑒 = 𝐸) |
| 4 | 3 | eleq1d 2825 |
. . . . . . . . 9
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒 ∈ ℕ ↔ 𝐸 ∈ ℕ)) |
| 5 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
| 6 | 5 | eleq1d 2825 |
. . . . . . . . 9
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑓 ∈ 𝐵 ↔ 𝐹 ∈ 𝐵)) |
| 7 | 5 | fveq2d 6909 |
. . . . . . . . . . . . 13
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑂‘𝑓) = (𝑂‘𝐹)) |
| 8 | 7 | fveq1d 6907 |
. . . . . . . . . . . 12
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑂‘𝑓)‘𝑦) = ((𝑂‘𝐹)‘𝑦)) |
| 9 | 3, 8 | oveq12d 7450 |
. . . . . . . . . . 11
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = (𝐸 ↑ ((𝑂‘𝐹)‘𝑦))) |
| 10 | 3 | oveq1d 7447 |
. . . . . . . . . . . 12
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒𝐷𝑦) = (𝐸𝐷𝑦)) |
| 11 | 7, 10 | fveq12d 6912 |
. . . . . . . . . . 11
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑂‘𝑓)‘(𝑒𝐷𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))) |
| 12 | 9, 11 | eqeq12d 2752 |
. . . . . . . . . 10
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)) ↔ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)))) |
| 13 | 12 | ralbidv 3177 |
. . . . . . . . 9
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)) ↔ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)))) |
| 14 | 4, 6, 13 | 3anbi123d 1437 |
. . . . . . . 8
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦))) ↔ (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))))) |
| 15 | | aks6d1c1p1.1 |
. . . . . . . 8
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒𝐷𝑦)))} |
| 16 | 14, 15 | brabga 5538 |
. . . . . . 7
⊢ ((𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵) → (𝐸 ∼ 𝐹 ↔ (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))))) |
| 17 | 1, 2, 16 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐸 ∼ 𝐹 ↔ (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))))) |
| 18 | 17 | biimpd 229 |
. . . . 5
⊢ (𝜑 → (𝐸 ∼ 𝐹 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))))) |
| 19 | 18 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ∼ 𝐹) → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)))) |
| 20 | 19 | simp3d 1144 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ∼ 𝐹) → ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))) |
| 21 | 20 | ex 412 |
. 2
⊢ (𝜑 → (𝐸 ∼ 𝐹 → ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)))) |
| 22 | 1, 2 | jca 511 |
. . 3
⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
| 23 | | df-3an 1088 |
. . . . . . . . 9
⊢ ((𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))) ↔ ((𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)))) |
| 24 | 23 | bicomi 224 |
. . . . . . . 8
⊢ (((𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))) ↔ (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)))) |
| 25 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (((𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))) ↔ (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))))) |
| 26 | 17 | biimprd 248 |
. . . . . . 7
⊢ (𝜑 → ((𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))) → 𝐸 ∼ 𝐹)) |
| 27 | 25, 26 | sylbid 240 |
. . . . . 6
⊢ (𝜑 → (((𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))) → 𝐸 ∼ 𝐹)) |
| 28 | 27 | imp 406 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)))) → 𝐸 ∼ 𝐹) |
| 29 | 28 | anassrs 467 |
. . . 4
⊢ (((𝜑 ∧ (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦))) → 𝐸 ∼ 𝐹) |
| 30 | 29 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) → (∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)) → 𝐸 ∼ 𝐹)) |
| 31 | 22, 30 | mpdan 687 |
. 2
⊢ (𝜑 → (∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)) → 𝐸 ∼ 𝐹)) |
| 32 | 21, 31 | impbid 212 |
1
⊢ (𝜑 → (𝐸 ∼ 𝐹 ↔ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸𝐷𝑦)))) |