Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p1 Structured version   Visualization version   GIF version

Theorem aks6d1c1p1 42089
Description: Definition of the introspective relation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p1.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
aks6d1c1p1.2 (𝜑𝐹𝐵)
aks6d1c1p1.3 (𝜑𝐸 ∈ ℕ)
Assertion
Ref Expression
aks6d1c1p1 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
Distinct variable groups:   ,𝑒,𝑓   𝐵,𝑒,𝑓   𝐷,𝑒,𝑓   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝐾,𝑓   𝑒,𝑂,𝑓   𝑅,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓)   𝐵(𝑦)   𝐷(𝑦)   (𝑦,𝑒,𝑓)   𝑅(𝑦)   (𝑦)   𝐾(𝑦)   𝑂(𝑦)

Proof of Theorem aks6d1c1p1
StepHypRef Expression
1 aks6d1c1p1.3 . . . . . . 7 (𝜑𝐸 ∈ ℕ)
2 aks6d1c1p1.2 . . . . . . 7 (𝜑𝐹𝐵)
3 simpl 482 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑒 = 𝐸)
43eleq1d 2824 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 ∈ ℕ ↔ 𝐸 ∈ ℕ))
5 simpr 484 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑓 = 𝐹)
65eleq1d 2824 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑓𝐵𝐹𝐵))
75fveq2d 6911 . . . . . . . . . . . . 13 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑂𝑓) = (𝑂𝐹))
87fveq1d 6909 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑂𝑓)‘𝑦) = ((𝑂𝐹)‘𝑦))
93, 8oveq12d 7449 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 ((𝑂𝑓)‘𝑦)) = (𝐸 ((𝑂𝐹)‘𝑦)))
103oveq1d 7446 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒𝐷𝑦) = (𝐸𝐷𝑦))
117, 10fveq12d 6914 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑂𝑓)‘(𝑒𝐷𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))
129, 11eqeq12d 2751 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)) ↔ (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
1312ralbidv 3176 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)) ↔ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
144, 6, 133anbi123d 1435 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦))) ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
15 aks6d1c1p1.1 . . . . . . . 8 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
1614, 15brabga 5544 . . . . . . 7 ((𝐸 ∈ ℕ ∧ 𝐹𝐵) → (𝐸 𝐹 ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
171, 2, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐸 𝐹 ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
1817biimpd 229 . . . . 5 (𝜑 → (𝐸 𝐹 → (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
1918imp 406 . . . 4 ((𝜑𝐸 𝐹) → (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
2019simp3d 1143 . . 3 ((𝜑𝐸 𝐹) → ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))
2120ex 412 . 2 (𝜑 → (𝐸 𝐹 → ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
221, 2jca 511 . . 3 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
23 df-3an 1088 . . . . . . . . 9 ((𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) ↔ ((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
2423bicomi 224 . . . . . . . 8 (((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
2524a1i 11 . . . . . . 7 (𝜑 → (((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
2617biimprd 248 . . . . . . 7 (𝜑 → ((𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) → 𝐸 𝐹))
2725, 26sylbid 240 . . . . . 6 (𝜑 → (((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) → 𝐸 𝐹))
2827imp 406 . . . . 5 ((𝜑 ∧ ((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))) → 𝐸 𝐹)
2928anassrs 467 . . . 4 (((𝜑 ∧ (𝐸 ∈ ℕ ∧ 𝐹𝐵)) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) → 𝐸 𝐹)
3029ex 412 . . 3 ((𝜑 ∧ (𝐸 ∈ ℕ ∧ 𝐹𝐵)) → (∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)) → 𝐸 𝐹))
3122, 30mpdan 687 . 2 (𝜑 → (∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)) → 𝐸 𝐹))
3221, 31impbid 212 1 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  {copab 5210  cfv 6563  (class class class)co 7431  cn 12264   PrimRoots cprimroots 42073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  aks6d1c1p2  42091  aks6d1c1p3  42092  aks6d1c1p4  42093  aks6d1c1p5  42094  aks6d1c1p7  42095  aks6d1c1p6  42096  aks6d1c1p8  42097  aks6d1c2lem3  42108  aks6d1c6lem2  42153  aks5lem5a  42173
  Copyright terms: Public domain W3C validator