Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p1 Structured version   Visualization version   GIF version

Theorem aks6d1c1p1 41610
Description: Definition of the introspective relation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p1.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
aks6d1c1p1.2 (𝜑𝐹𝐵)
aks6d1c1p1.3 (𝜑𝐸 ∈ ℕ)
Assertion
Ref Expression
aks6d1c1p1 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
Distinct variable groups:   ,𝑒,𝑓   𝐵,𝑒,𝑓   𝐷,𝑒,𝑓   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝐾,𝑓   𝑒,𝑂,𝑓   𝑅,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓)   𝐵(𝑦)   𝐷(𝑦)   (𝑦,𝑒,𝑓)   𝑅(𝑦)   (𝑦)   𝐾(𝑦)   𝑂(𝑦)

Proof of Theorem aks6d1c1p1
StepHypRef Expression
1 aks6d1c1p1.3 . . . . . . 7 (𝜑𝐸 ∈ ℕ)
2 aks6d1c1p1.2 . . . . . . 7 (𝜑𝐹𝐵)
3 simpl 481 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑒 = 𝐸)
43eleq1d 2814 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 ∈ ℕ ↔ 𝐸 ∈ ℕ))
5 simpr 483 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑓 = 𝐹)
65eleq1d 2814 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑓𝐵𝐹𝐵))
75fveq2d 6906 . . . . . . . . . . . . 13 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑂𝑓) = (𝑂𝐹))
87fveq1d 6904 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑂𝑓)‘𝑦) = ((𝑂𝐹)‘𝑦))
93, 8oveq12d 7444 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 ((𝑂𝑓)‘𝑦)) = (𝐸 ((𝑂𝐹)‘𝑦)))
103oveq1d 7441 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒𝐷𝑦) = (𝐸𝐷𝑦))
117, 10fveq12d 6909 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑂𝑓)‘(𝑒𝐷𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))
129, 11eqeq12d 2744 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)) ↔ (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
1312ralbidv 3175 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)) ↔ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
144, 6, 133anbi123d 1432 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦))) ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
15 aks6d1c1p1.1 . . . . . . . 8 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒𝐷𝑦)))}
1614, 15brabga 5540 . . . . . . 7 ((𝐸 ∈ ℕ ∧ 𝐹𝐵) → (𝐸 𝐹 ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
171, 2, 16syl2anc 582 . . . . . 6 (𝜑 → (𝐸 𝐹 ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
1817biimpd 228 . . . . 5 (𝜑 → (𝐸 𝐹 → (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
1918imp 405 . . . 4 ((𝜑𝐸 𝐹) → (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
2019simp3d 1141 . . 3 ((𝜑𝐸 𝐹) → ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))
2120ex 411 . 2 (𝜑 → (𝐸 𝐹 → ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
221, 2jca 510 . . 3 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
23 df-3an 1086 . . . . . . . . 9 ((𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) ↔ ((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
2423bicomi 223 . . . . . . . 8 (((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
2524a1i 11 . . . . . . 7 (𝜑 → (((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) ↔ (𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))))
2617biimprd 247 . . . . . . 7 (𝜑 → ((𝐸 ∈ ℕ ∧ 𝐹𝐵 ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) → 𝐸 𝐹))
2725, 26sylbid 239 . . . . . 6 (𝜑 → (((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) → 𝐸 𝐹))
2827imp 405 . . . . 5 ((𝜑 ∧ ((𝐸 ∈ ℕ ∧ 𝐹𝐵) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)))) → 𝐸 𝐹)
2928anassrs 466 . . . 4 (((𝜑 ∧ (𝐸 ∈ ℕ ∧ 𝐹𝐵)) ∧ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))) → 𝐸 𝐹)
3029ex 411 . . 3 ((𝜑 ∧ (𝐸 ∈ ℕ ∧ 𝐹𝐵)) → (∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)) → 𝐸 𝐹))
3122, 30mpdan 685 . 2 (𝜑 → (∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦)) → 𝐸 𝐹))
3221, 31impbid 211 1 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝐾 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸𝐷𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058   class class class wbr 5152  {copab 5214  cfv 6553  (class class class)co 7426  cn 12250   PrimRoots cprimroots 41594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-iota 6505  df-fv 6561  df-ov 7429
This theorem is referenced by:  aks6d1c1p2  41612  aks6d1c1p3  41613  aks6d1c1p4  41614  aks6d1c1p5  41615  aks6d1c1p7  41616  aks6d1c1p6  41617  aks6d1c1p8  41618  aks6d1c2lem3  41629  aks6d1c6lem2  41675
  Copyright terms: Public domain W3C validator