Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p6 Structured version   Visualization version   GIF version

Theorem aks6d1c1p6 42095
Description: If a polynomials 𝐹 is introspective to 𝐸, then so are its powers. (Contributed by metakunt, 30-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1.2 𝑆 = (Poly1𝐾)
aks6d1c1.3 𝐵 = (Base‘𝑆)
aks6d1c1.4 𝑋 = (var1𝐾)
aks6d1c1.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1.7 = (.g𝑉)
aks6d1c1.8 𝐶 = (algSc‘𝑆)
aks6d1c1.9 𝐷 = (.g𝑊)
aks6d1c1.10 𝑃 = (chr‘𝐾)
aks6d1c1.11 𝑂 = (eval1𝐾)
aks6d1c1.12 + = (+g𝑆)
aks6d1c1.13 (𝜑𝐾 ∈ Field)
aks6d1c1.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1.16 (𝜑𝑁 ∈ ℕ)
aks6d1c1.17 (𝜑𝑃𝑁)
aks6d1c1.18 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p6.1 (𝜑𝐸 𝐹)
aks6d1c1p6.2 (𝜑𝐿 ∈ ℕ0)
Assertion
Ref Expression
aks6d1c1p6 (𝜑𝐸 (𝐿𝐷𝐹))
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝑦,   𝐵,𝑒,𝑓   𝐷,𝑒,𝑓,𝑦   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝑂,𝑓,𝑦   𝑅,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑒,𝑊,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝑃(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝐿(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p6
Dummy variables 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p6.2 . 2 (𝜑𝐿 ∈ ℕ0)
2 oveq1 7437 . . . 4 ( = 0 → (𝐷𝐹) = (0𝐷𝐹))
32breq2d 5159 . . 3 ( = 0 → (𝐸 (𝐷𝐹) ↔ 𝐸 (0𝐷𝐹)))
4 oveq1 7437 . . . 4 ( = 𝑖 → (𝐷𝐹) = (𝑖𝐷𝐹))
54breq2d 5159 . . 3 ( = 𝑖 → (𝐸 (𝐷𝐹) ↔ 𝐸 (𝑖𝐷𝐹)))
6 oveq1 7437 . . . 4 ( = (𝑖 + 1) → (𝐷𝐹) = ((𝑖 + 1)𝐷𝐹))
76breq2d 5159 . . 3 ( = (𝑖 + 1) → (𝐸 (𝐷𝐹) ↔ 𝐸 ((𝑖 + 1)𝐷𝐹)))
8 oveq1 7437 . . . 4 ( = 𝐿 → (𝐷𝐹) = (𝐿𝐷𝐹))
98breq2d 5159 . . 3 ( = 𝐿 → (𝐸 (𝐷𝐹) ↔ 𝐸 (𝐿𝐷𝐹)))
10 aks6d1c1.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
11 aks6d1c1p6.1 . . . . . . . . . . . . . . . 16 (𝜑𝐸 𝐹)
1210, 11aks6d1c1p1rcl 42089 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
1312simprd 495 . . . . . . . . . . . . . 14 (𝜑𝐹𝐵)
14 aks6d1c1.3 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑆)
1513, 14eleqtrdi 2848 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (Base‘𝑆))
16 aks6d1c1.5 . . . . . . . . . . . . . 14 𝑊 = (mulGrp‘𝑆)
17 eqid 2734 . . . . . . . . . . . . . 14 (Base‘𝑆) = (Base‘𝑆)
1816, 17mgpbas 20157 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑊)
1915, 18eleqtrdi 2848 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Base‘𝑊))
20 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝑊) = (Base‘𝑊)
21 eqid 2734 . . . . . . . . . . . . 13 (0g𝑊) = (0g𝑊)
22 aks6d1c1.9 . . . . . . . . . . . . 13 𝐷 = (.g𝑊)
2320, 21, 22mulg0 19104 . . . . . . . . . . . 12 (𝐹 ∈ (Base‘𝑊) → (0𝐷𝐹) = (0g𝑊))
2419, 23syl 17 . . . . . . . . . . 11 (𝜑 → (0𝐷𝐹) = (0g𝑊))
25 eqid 2734 . . . . . . . . . . . . 13 (1r𝑆) = (1r𝑆)
2616, 25ringidval 20200 . . . . . . . . . . . 12 (1r𝑆) = (0g𝑊)
2726eqcomi 2743 . . . . . . . . . . 11 (0g𝑊) = (1r𝑆)
2824, 27eqtrdi 2790 . . . . . . . . . 10 (𝜑 → (0𝐷𝐹) = (1r𝑆))
2928adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (0𝐷𝐹) = (1r𝑆))
3029fveq2d 6910 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(0𝐷𝐹)) = (𝑂‘(1r𝑆)))
3130fveq1d 6908 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(0𝐷𝐹))‘𝑦) = ((𝑂‘(1r𝑆))‘𝑦))
3231oveq2d 7446 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(0𝐷𝐹))‘𝑦)) = (𝐸 ((𝑂‘(1r𝑆))‘𝑦)))
33 aks6d1c1.13 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Field)
3433fldcrngd 20758 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
35 crngring 20262 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
37 aks6d1c1.2 . . . . . . . . . . . . . 14 𝑆 = (Poly1𝐾)
38 aks6d1c1.8 . . . . . . . . . . . . . 14 𝐶 = (algSc‘𝑆)
39 eqid 2734 . . . . . . . . . . . . . 14 (1r𝐾) = (1r𝐾)
4037, 38, 39, 25ply1scl1 22311 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (𝐶‘(1r𝐾)) = (1r𝑆))
4136, 40syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐶‘(1r𝐾)) = (1r𝑆))
4241adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐶‘(1r𝐾)) = (1r𝑆))
4342eqcomd 2740 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r𝑆) = (𝐶‘(1r𝐾)))
4443fveq2d 6910 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(1r𝑆)) = (𝑂‘(𝐶‘(1r𝐾))))
4544fveq1d 6908 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(1r𝑆))‘𝑦) = ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦))
4645oveq2d 7446 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(1r𝑆))‘𝑦)) = (𝐸 ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦)))
47 aks6d1c1.11 . . . . . . . . . . 11 𝑂 = (eval1𝐾)
48 eqid 2734 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
4934adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
5048, 39ringidcl 20279 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
5136, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
5251adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r𝐾) ∈ (Base‘𝐾))
53 aks6d1c1.6 . . . . . . . . . . . . . . . . . 18 𝑉 = (mulGrp‘𝐾)
5453crngmgp 20258 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
5534, 54syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑉 ∈ CMnd)
56 aks6d1c1.15 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℕ)
5756nnnn0d 12584 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℕ0)
58 eqid 2734 . . . . . . . . . . . . . . . 16 (.g𝑉) = (.g𝑉)
5955, 57, 58isprimroot 42074 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑧 ∈ ℕ0 ((𝑧(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑧))))
6059biimpd 229 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑧 ∈ ℕ0 ((𝑧(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑧))))
6160imp 406 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑧 ∈ ℕ0 ((𝑧(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑧)))
6261simp1d 1141 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
6353, 48mgpbas 20157 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝑉)
6463eqcomi 2743 . . . . . . . . . . . 12 (Base‘𝑉) = (Base‘𝐾)
6562, 64eleqtrdi 2848 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
6647, 37, 48, 38, 14, 49, 52, 65evl1scad 22354 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘(1r𝐾)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦) = (1r𝐾)))
6766simprd 495 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦) = (1r𝐾))
6867oveq2d 7446 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦)) = (𝐸 (1r𝐾)))
6955cmnmndd 19836 . . . . . . . . . 10 (𝜑𝑉 ∈ Mnd)
7012simpld 494 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ)
7170nnnn0d 12584 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ0)
72 eqid 2734 . . . . . . . . . . 11 (Base‘𝑉) = (Base‘𝑉)
73 aks6d1c1.7 . . . . . . . . . . 11 = (.g𝑉)
7453, 39ringidval 20200 . . . . . . . . . . 11 (1r𝐾) = (0g𝑉)
7572, 73, 74mulgnn0z 19131 . . . . . . . . . 10 ((𝑉 ∈ Mnd ∧ 𝐸 ∈ ℕ0) → (𝐸 (1r𝐾)) = (1r𝐾))
7669, 71, 75syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐸 (1r𝐾)) = (1r𝐾))
7776adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (1r𝐾)) = (1r𝐾))
7869adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
7971adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈ ℕ0)
8063, 73mulgnn0cl 19120 . . . . . . . . . . . 12 ((𝑉 ∈ Mnd ∧ 𝐸 ∈ ℕ0𝑦 ∈ (Base‘𝐾)) → (𝐸 𝑦) ∈ (Base‘𝐾))
8178, 79, 65, 80syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 𝑦) ∈ (Base‘𝐾))
8247, 37, 48, 38, 14, 49, 52, 81evl1scad 22354 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘(1r𝐾)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)) = (1r𝐾)))
8382simprd 495 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)) = (1r𝐾))
8483eqcomd 2740 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r𝐾) = ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)))
8568, 77, 843eqtrd 2778 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦)) = ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)))
8642fveq2d 6910 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(𝐶‘(1r𝐾))) = (𝑂‘(1r𝑆)))
8786fveq1d 6908 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)) = ((𝑂‘(1r𝑆))‘(𝐸 𝑦)))
8846, 85, 873eqtrd 2778 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(1r𝑆))‘𝑦)) = ((𝑂‘(1r𝑆))‘(𝐸 𝑦)))
8929eqcomd 2740 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r𝑆) = (0𝐷𝐹))
9089fveq2d 6910 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(1r𝑆)) = (𝑂‘(0𝐷𝐹)))
9190fveq1d 6908 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(1r𝑆))‘(𝐸 𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 𝑦)))
9232, 88, 913eqtrd 2778 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(0𝐷𝐹))‘𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 𝑦)))
9392ralrimiva 3143 . . . 4 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(0𝐷𝐹))‘𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 𝑦)))
9437ply1ring 22264 . . . . . . . 8 (𝐾 ∈ Ring → 𝑆 ∈ Ring)
9536, 94syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
9617, 25ringidcl 20279 . . . . . . 7 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
9795, 96syl 17 . . . . . 6 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
9828eqcomd 2740 . . . . . . 7 (𝜑 → (1r𝑆) = (0𝐷𝐹))
9914a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑆))
10099eqcomd 2740 . . . . . . 7 (𝜑 → (Base‘𝑆) = 𝐵)
10198, 100eleq12d 2832 . . . . . 6 (𝜑 → ((1r𝑆) ∈ (Base‘𝑆) ↔ (0𝐷𝐹) ∈ 𝐵))
10297, 101mpbid 232 . . . . 5 (𝜑 → (0𝐷𝐹) ∈ 𝐵)
10310, 102, 70aks6d1c1p1 42088 . . . 4 (𝜑 → (𝐸 (0𝐷𝐹) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(0𝐷𝐹))‘𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 𝑦))))
10493, 103mpbird 257 . . 3 (𝜑𝐸 (0𝐷𝐹))
105 aks6d1c1.4 . . . . 5 𝑋 = (var1𝐾)
106 aks6d1c1.10 . . . . 5 𝑃 = (chr‘𝐾)
107 aks6d1c1.12 . . . . 5 + = (+g𝑆)
10833ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐾 ∈ Field)
109 aks6d1c1.14 . . . . . 6 (𝜑𝑃 ∈ ℙ)
110109ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑃 ∈ ℙ)
11156ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑅 ∈ ℕ)
112 aks6d1c1.18 . . . . . 6 (𝜑 → (𝑁 gcd 𝑅) = 1)
113112ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → (𝑁 gcd 𝑅) = 1)
114 aks6d1c1.17 . . . . . 6 (𝜑𝑃𝑁)
115114ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑃𝑁)
116 simpr 484 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐸 (𝑖𝐷𝐹))
11711ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐸 𝐹)
11810, 37, 14, 105, 16, 53, 73, 38, 22, 106, 47, 107, 108, 110, 111, 113, 115, 116, 117aks6d1c1p4 42092 . . . 4 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐸 ((𝑖𝐷𝐹)(+g𝑊)𝐹))
11916ringmgp 20256 . . . . . . . 8 (𝑆 ∈ Ring → 𝑊 ∈ Mnd)
12095, 119syl 17 . . . . . . 7 (𝜑𝑊 ∈ Mnd)
121120adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑊 ∈ Mnd)
122121adantr 480 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑊 ∈ Mnd)
123 simplr 769 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑖 ∈ ℕ0)
12418a1i 11 . . . . . . . . . 10 (𝜑 → (Base‘𝑆) = (Base‘𝑊))
12599, 124eqtrd 2774 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑊))
126125eleq2d 2824 . . . . . . . 8 (𝜑 → (𝐹𝐵𝐹 ∈ (Base‘𝑊)))
12713, 126mpbid 232 . . . . . . 7 (𝜑𝐹 ∈ (Base‘𝑊))
128127adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐹 ∈ (Base‘𝑊))
129128adantr 480 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐹 ∈ (Base‘𝑊))
130 eqid 2734 . . . . . 6 (+g𝑊) = (+g𝑊)
13120, 22, 130mulgnn0p1 19115 . . . . 5 ((𝑊 ∈ Mnd ∧ 𝑖 ∈ ℕ0𝐹 ∈ (Base‘𝑊)) → ((𝑖 + 1)𝐷𝐹) = ((𝑖𝐷𝐹)(+g𝑊)𝐹))
132122, 123, 129, 131syl3anc 1370 . . . 4 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → ((𝑖 + 1)𝐷𝐹) = ((𝑖𝐷𝐹)(+g𝑊)𝐹))
133118, 132breqtrrd 5175 . . 3 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐸 ((𝑖 + 1)𝐷𝐹))
1343, 5, 7, 9, 104, 133nn0indd 12712 . 2 ((𝜑𝐿 ∈ ℕ0) → 𝐸 (𝐿𝐷𝐹))
1351, 134mpdan 687 1 (𝜑𝐸 (𝐿𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058   class class class wbr 5147  {copab 5209  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155  cn 12263  0cn0 12523  cdvds 16286   gcd cgcd 16527  cprime 16704  Basecbs 17244  +gcplusg 17297  0gc0g 17485  Mndcmnd 18759  .gcmg 19097  CMndccmn 19812  mulGrpcmgp 20151  1rcur 20198  Ringcrg 20250  CRingccrg 20251  Fieldcfield 20746  chrcchr 21529  algSccascl 21889  var1cv1 22192  Poly1cpl1 22193  eval1ce1 22333   PrimRoots cprimroots 42072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-srg 20204  df-ring 20252  df-cring 20253  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-field 20748  df-lmod 20876  df-lss 20947  df-lsp 20987  df-assa 21890  df-asp 21891  df-ascl 21892  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-evls 22115  df-evl 22116  df-psr1 22196  df-ply1 22198  df-evl1 22335  df-primroots 42073
This theorem is referenced by:  aks6d1c1  42097
  Copyright terms: Public domain W3C validator