Step | Hyp | Ref
| Expression |
1 | | aks6d1c1p6.2 |
. 2
⊢ (𝜑 → 𝐿 ∈
ℕ0) |
2 | | oveq1 7433 |
. . . 4
⊢ (ℎ = 0 → (ℎ𝐷𝐹) = (0𝐷𝐹)) |
3 | 2 | breq2d 5164 |
. . 3
⊢ (ℎ = 0 → (𝐸 ∼ (ℎ𝐷𝐹) ↔ 𝐸 ∼ (0𝐷𝐹))) |
4 | | oveq1 7433 |
. . . 4
⊢ (ℎ = 𝑖 → (ℎ𝐷𝐹) = (𝑖𝐷𝐹)) |
5 | 4 | breq2d 5164 |
. . 3
⊢ (ℎ = 𝑖 → (𝐸 ∼ (ℎ𝐷𝐹) ↔ 𝐸 ∼ (𝑖𝐷𝐹))) |
6 | | oveq1 7433 |
. . . 4
⊢ (ℎ = (𝑖 + 1) → (ℎ𝐷𝐹) = ((𝑖 + 1)𝐷𝐹)) |
7 | 6 | breq2d 5164 |
. . 3
⊢ (ℎ = (𝑖 + 1) → (𝐸 ∼ (ℎ𝐷𝐹) ↔ 𝐸 ∼ ((𝑖 + 1)𝐷𝐹))) |
8 | | oveq1 7433 |
. . . 4
⊢ (ℎ = 𝐿 → (ℎ𝐷𝐹) = (𝐿𝐷𝐹)) |
9 | 8 | breq2d 5164 |
. . 3
⊢ (ℎ = 𝐿 → (𝐸 ∼ (ℎ𝐷𝐹) ↔ 𝐸 ∼ (𝐿𝐷𝐹))) |
10 | | aks6d1c1.1 |
. . . . . . . . . . . . . . . 16
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒 ↑ 𝑦)))} |
11 | | aks6d1c1p6.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ∼ 𝐹) |
12 | 10, 11 | aks6d1c1p1rcl 41611 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
13 | 12 | simprd 494 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
14 | | aks6d1c1.3 |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝑆) |
15 | 13, 14 | eleqtrdi 2839 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (Base‘𝑆)) |
16 | | aks6d1c1.5 |
. . . . . . . . . . . . . 14
⊢ 𝑊 = (mulGrp‘𝑆) |
17 | | eqid 2728 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑆) =
(Base‘𝑆) |
18 | 16, 17 | mgpbas 20087 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑆) =
(Base‘𝑊) |
19 | 15, 18 | eleqtrdi 2839 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (Base‘𝑊)) |
20 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑊) =
(Base‘𝑊) |
21 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑊) = (0g‘𝑊) |
22 | | aks6d1c1.9 |
. . . . . . . . . . . . 13
⊢ 𝐷 = (.g‘𝑊) |
23 | 20, 21, 22 | mulg0 19037 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Base‘𝑊) → (0𝐷𝐹) = (0g‘𝑊)) |
24 | 19, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0𝐷𝐹) = (0g‘𝑊)) |
25 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑆) = (1r‘𝑆) |
26 | 16, 25 | ringidval 20130 |
. . . . . . . . . . . 12
⊢
(1r‘𝑆) = (0g‘𝑊) |
27 | 26 | eqcomi 2737 |
. . . . . . . . . . 11
⊢
(0g‘𝑊) = (1r‘𝑆) |
28 | 24, 27 | eqtrdi 2784 |
. . . . . . . . . 10
⊢ (𝜑 → (0𝐷𝐹) = (1r‘𝑆)) |
29 | 28 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (0𝐷𝐹) = (1r‘𝑆)) |
30 | 29 | fveq2d 6906 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(0𝐷𝐹)) = (𝑂‘(1r‘𝑆))) |
31 | 30 | fveq1d 6904 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(0𝐷𝐹))‘𝑦) = ((𝑂‘(1r‘𝑆))‘𝑦)) |
32 | 31 | oveq2d 7442 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘(0𝐷𝐹))‘𝑦)) = (𝐸 ↑ ((𝑂‘(1r‘𝑆))‘𝑦))) |
33 | | aks6d1c1.13 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ Field) |
34 | 33 | fldcrngd 20644 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ CRing) |
35 | | crngring 20192 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ CRing → 𝐾 ∈ Ring) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ Ring) |
37 | | aks6d1c1.2 |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (Poly1‘𝐾) |
38 | | aks6d1c1.8 |
. . . . . . . . . . . . . 14
⊢ 𝐶 = (algSc‘𝑆) |
39 | | eqid 2728 |
. . . . . . . . . . . . . 14
⊢
(1r‘𝐾) = (1r‘𝐾) |
40 | 37, 38, 39, 25 | ply1scl1 22219 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Ring → (𝐶‘(1r‘𝐾)) = (1r‘𝑆)) |
41 | 36, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶‘(1r‘𝐾)) = (1r‘𝑆)) |
42 | 41 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐶‘(1r‘𝐾)) = (1r‘𝑆)) |
43 | 42 | eqcomd 2734 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r‘𝑆) = (𝐶‘(1r‘𝐾))) |
44 | 43 | fveq2d 6906 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(1r‘𝑆)) = (𝑂‘(𝐶‘(1r‘𝐾)))) |
45 | 44 | fveq1d 6904 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(1r‘𝑆))‘𝑦) = ((𝑂‘(𝐶‘(1r‘𝐾)))‘𝑦)) |
46 | 45 | oveq2d 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘(1r‘𝑆))‘𝑦)) = (𝐸 ↑ ((𝑂‘(𝐶‘(1r‘𝐾)))‘𝑦))) |
47 | | aks6d1c1.11 |
. . . . . . . . . . 11
⊢ 𝑂 = (eval1‘𝐾) |
48 | | eqid 2728 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝐾) |
49 | 34 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing) |
50 | 48, 39 | ringidcl 20209 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Ring →
(1r‘𝐾)
∈ (Base‘𝐾)) |
51 | 36, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1r‘𝐾) ∈ (Base‘𝐾)) |
52 | 51 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r‘𝐾) ∈ (Base‘𝐾)) |
53 | | aks6d1c1.6 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑉 = (mulGrp‘𝐾) |
54 | 53 | crngmgp 20188 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ CRing → 𝑉 ∈ CMnd) |
55 | 34, 54 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑉 ∈ CMnd) |
56 | | aks6d1c1.15 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑅 ∈ ℕ) |
57 | 56 | nnnn0d 12570 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
58 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(.g‘𝑉) = (.g‘𝑉) |
59 | 55, 57, 58 | isprimroot 41596 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g‘𝑉)𝑦) = (0g‘𝑉) ∧ ∀𝑧 ∈ ℕ0 ((𝑧(.g‘𝑉)𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑧)))) |
60 | 59 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g‘𝑉)𝑦) = (0g‘𝑉) ∧ ∀𝑧 ∈ ℕ0 ((𝑧(.g‘𝑉)𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑧)))) |
61 | 60 | imp 405 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g‘𝑉)𝑦) = (0g‘𝑉) ∧ ∀𝑧 ∈ ℕ0 ((𝑧(.g‘𝑉)𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑧))) |
62 | 61 | simp1d 1139 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉)) |
63 | 53, 48 | mgpbas 20087 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐾) =
(Base‘𝑉) |
64 | 63 | eqcomi 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝑉) =
(Base‘𝐾) |
65 | 62, 64 | eleqtrdi 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾)) |
66 | 47, 37, 48, 38, 14, 49, 52, 65 | evl1scad 22261 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘(1r‘𝐾)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘(1r‘𝐾)))‘𝑦) = (1r‘𝐾))) |
67 | 66 | simprd 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘(1r‘𝐾)))‘𝑦) = (1r‘𝐾)) |
68 | 67 | oveq2d 7442 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘(𝐶‘(1r‘𝐾)))‘𝑦)) = (𝐸 ↑
(1r‘𝐾))) |
69 | 55 | cmnmndd 19766 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ Mnd) |
70 | 12 | simpld 493 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ ℕ) |
71 | 70 | nnnn0d 12570 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
72 | | eqid 2728 |
. . . . . . . . . . 11
⊢
(Base‘𝑉) =
(Base‘𝑉) |
73 | | aks6d1c1.7 |
. . . . . . . . . . 11
⊢ ↑ =
(.g‘𝑉) |
74 | 53, 39 | ringidval 20130 |
. . . . . . . . . . 11
⊢
(1r‘𝐾) = (0g‘𝑉) |
75 | 72, 73, 74 | mulgnn0z 19063 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Mnd ∧ 𝐸 ∈ ℕ0)
→ (𝐸 ↑
(1r‘𝐾)) =
(1r‘𝐾)) |
76 | 69, 71, 75 | syl2anc 582 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ↑
(1r‘𝐾)) =
(1r‘𝐾)) |
77 | 76 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑
(1r‘𝐾)) =
(1r‘𝐾)) |
78 | 69 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd) |
79 | 71 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈
ℕ0) |
80 | 63, 73 | mulgnn0cl 19052 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ Mnd ∧ 𝐸 ∈ ℕ0
∧ 𝑦 ∈
(Base‘𝐾)) →
(𝐸 ↑ 𝑦) ∈ (Base‘𝐾)) |
81 | 78, 79, 65, 80 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ 𝑦) ∈ (Base‘𝐾)) |
82 | 47, 37, 48, 38, 14, 49, 52, 81 | evl1scad 22261 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘(1r‘𝐾)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘(1r‘𝐾)))‘(𝐸 ↑ 𝑦)) = (1r‘𝐾))) |
83 | 82 | simprd 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘(1r‘𝐾)))‘(𝐸 ↑ 𝑦)) = (1r‘𝐾)) |
84 | 83 | eqcomd 2734 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r‘𝐾) = ((𝑂‘(𝐶‘(1r‘𝐾)))‘(𝐸 ↑ 𝑦))) |
85 | 68, 77, 84 | 3eqtrd 2772 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘(𝐶‘(1r‘𝐾)))‘𝑦)) = ((𝑂‘(𝐶‘(1r‘𝐾)))‘(𝐸 ↑ 𝑦))) |
86 | 42 | fveq2d 6906 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(𝐶‘(1r‘𝐾))) = (𝑂‘(1r‘𝑆))) |
87 | 86 | fveq1d 6904 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘(1r‘𝐾)))‘(𝐸 ↑ 𝑦)) = ((𝑂‘(1r‘𝑆))‘(𝐸 ↑ 𝑦))) |
88 | 46, 85, 87 | 3eqtrd 2772 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘(1r‘𝑆))‘𝑦)) = ((𝑂‘(1r‘𝑆))‘(𝐸 ↑ 𝑦))) |
89 | 29 | eqcomd 2734 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r‘𝑆) = (0𝐷𝐹)) |
90 | 89 | fveq2d 6906 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(1r‘𝑆)) = (𝑂‘(0𝐷𝐹))) |
91 | 90 | fveq1d 6904 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(1r‘𝑆))‘(𝐸 ↑ 𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 ↑ 𝑦))) |
92 | 32, 88, 91 | 3eqtrd 2772 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘(0𝐷𝐹))‘𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 ↑ 𝑦))) |
93 | 92 | ralrimiva 3143 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘(0𝐷𝐹))‘𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 ↑ 𝑦))) |
94 | 37 | ply1ring 22173 |
. . . . . . . 8
⊢ (𝐾 ∈ Ring → 𝑆 ∈ Ring) |
95 | 36, 94 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Ring) |
96 | 17, 25 | ringidcl 20209 |
. . . . . . 7
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ (Base‘𝑆)) |
97 | 95, 96 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
98 | 28 | eqcomd 2734 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑆) = (0𝐷𝐹)) |
99 | 14 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
100 | 99 | eqcomd 2734 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑆) = 𝐵) |
101 | 98, 100 | eleq12d 2823 |
. . . . . 6
⊢ (𝜑 →
((1r‘𝑆)
∈ (Base‘𝑆)
↔ (0𝐷𝐹) ∈ 𝐵)) |
102 | 97, 101 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (0𝐷𝐹) ∈ 𝐵) |
103 | 10, 102, 70 | aks6d1c1p1 41610 |
. . . 4
⊢ (𝜑 → (𝐸 ∼ (0𝐷𝐹) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘(0𝐷𝐹))‘𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 ↑ 𝑦)))) |
104 | 93, 103 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐸 ∼ (0𝐷𝐹)) |
105 | | aks6d1c1.4 |
. . . . 5
⊢ 𝑋 = (var1‘𝐾) |
106 | | aks6d1c1.10 |
. . . . 5
⊢ 𝑃 = (chr‘𝐾) |
107 | | aks6d1c1.12 |
. . . . 5
⊢ + =
(+g‘𝑆) |
108 | 33 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝐾 ∈ Field) |
109 | | aks6d1c1.14 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℙ) |
110 | 109 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝑃 ∈ ℙ) |
111 | 56 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝑅 ∈ ℕ) |
112 | | aks6d1c1.18 |
. . . . . 6
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
113 | 112 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → (𝑁 gcd 𝑅) = 1) |
114 | | aks6d1c1.17 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
115 | 114 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝑃 ∥ 𝑁) |
116 | | simpr 483 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝐸 ∼ (𝑖𝐷𝐹)) |
117 | 11 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝐸 ∼ 𝐹) |
118 | 10, 37, 14, 105, 16, 53, 73, 38, 22, 106, 47, 107, 108, 110, 111, 113, 115, 116, 117 | aks6d1c1p4 41614 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝐸 ∼ ((𝑖𝐷𝐹)(+g‘𝑊)𝐹)) |
119 | 16 | ringmgp 20186 |
. . . . . . . 8
⊢ (𝑆 ∈ Ring → 𝑊 ∈ Mnd) |
120 | 95, 119 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Mnd) |
121 | 120 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑊 ∈ Mnd) |
122 | 121 | adantr 479 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝑊 ∈ Mnd) |
123 | | simplr 767 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝑖 ∈ ℕ0) |
124 | 18 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑊)) |
125 | 99, 124 | eqtrd 2768 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
126 | 125 | eleq2d 2815 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ 𝐹 ∈ (Base‘𝑊))) |
127 | 13, 126 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (Base‘𝑊)) |
128 | 127 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐹 ∈ (Base‘𝑊)) |
129 | 128 | adantr 479 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝐹 ∈ (Base‘𝑊)) |
130 | | eqid 2728 |
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) |
131 | 20, 22, 130 | mulgnn0p1 19047 |
. . . . 5
⊢ ((𝑊 ∈ Mnd ∧ 𝑖 ∈ ℕ0
∧ 𝐹 ∈
(Base‘𝑊)) →
((𝑖 + 1)𝐷𝐹) = ((𝑖𝐷𝐹)(+g‘𝑊)𝐹)) |
132 | 122, 123,
129, 131 | syl3anc 1368 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → ((𝑖 + 1)𝐷𝐹) = ((𝑖𝐷𝐹)(+g‘𝑊)𝐹)) |
133 | 118, 132 | breqtrrd 5180 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝐸 ∼ (𝑖𝐷𝐹)) → 𝐸 ∼ ((𝑖 + 1)𝐷𝐹)) |
134 | 3, 5, 7, 9, 104, 133 | nn0indd 12697 |
. 2
⊢ ((𝜑 ∧ 𝐿 ∈ ℕ0) → 𝐸 ∼ (𝐿𝐷𝐹)) |
135 | 1, 134 | mpdan 685 |
1
⊢ (𝜑 → 𝐸 ∼ (𝐿𝐷𝐹)) |