Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p6 Structured version   Visualization version   GIF version

Theorem aks6d1c1p6 42109
Description: If a polynomials 𝐹 is introspective to 𝐸, then so are its powers. (Contributed by metakunt, 30-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1.2 𝑆 = (Poly1𝐾)
aks6d1c1.3 𝐵 = (Base‘𝑆)
aks6d1c1.4 𝑋 = (var1𝐾)
aks6d1c1.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1.7 = (.g𝑉)
aks6d1c1.8 𝐶 = (algSc‘𝑆)
aks6d1c1.9 𝐷 = (.g𝑊)
aks6d1c1.10 𝑃 = (chr‘𝐾)
aks6d1c1.11 𝑂 = (eval1𝐾)
aks6d1c1.12 + = (+g𝑆)
aks6d1c1.13 (𝜑𝐾 ∈ Field)
aks6d1c1.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1.16 (𝜑𝑁 ∈ ℕ)
aks6d1c1.17 (𝜑𝑃𝑁)
aks6d1c1.18 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p6.1 (𝜑𝐸 𝐹)
aks6d1c1p6.2 (𝜑𝐿 ∈ ℕ0)
Assertion
Ref Expression
aks6d1c1p6 (𝜑𝐸 (𝐿𝐷𝐹))
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝑦,   𝐵,𝑒,𝑓   𝐷,𝑒,𝑓,𝑦   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝑂,𝑓,𝑦   𝑅,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑒,𝑊,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝑃(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝐿(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p6
Dummy variables 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p6.2 . 2 (𝜑𝐿 ∈ ℕ0)
2 oveq1 7397 . . . 4 ( = 0 → (𝐷𝐹) = (0𝐷𝐹))
32breq2d 5122 . . 3 ( = 0 → (𝐸 (𝐷𝐹) ↔ 𝐸 (0𝐷𝐹)))
4 oveq1 7397 . . . 4 ( = 𝑖 → (𝐷𝐹) = (𝑖𝐷𝐹))
54breq2d 5122 . . 3 ( = 𝑖 → (𝐸 (𝐷𝐹) ↔ 𝐸 (𝑖𝐷𝐹)))
6 oveq1 7397 . . . 4 ( = (𝑖 + 1) → (𝐷𝐹) = ((𝑖 + 1)𝐷𝐹))
76breq2d 5122 . . 3 ( = (𝑖 + 1) → (𝐸 (𝐷𝐹) ↔ 𝐸 ((𝑖 + 1)𝐷𝐹)))
8 oveq1 7397 . . . 4 ( = 𝐿 → (𝐷𝐹) = (𝐿𝐷𝐹))
98breq2d 5122 . . 3 ( = 𝐿 → (𝐸 (𝐷𝐹) ↔ 𝐸 (𝐿𝐷𝐹)))
10 aks6d1c1.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
11 aks6d1c1p6.1 . . . . . . . . . . . . . . . 16 (𝜑𝐸 𝐹)
1210, 11aks6d1c1p1rcl 42103 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
1312simprd 495 . . . . . . . . . . . . . 14 (𝜑𝐹𝐵)
14 aks6d1c1.3 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑆)
1513, 14eleqtrdi 2839 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (Base‘𝑆))
16 aks6d1c1.5 . . . . . . . . . . . . . 14 𝑊 = (mulGrp‘𝑆)
17 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝑆) = (Base‘𝑆)
1816, 17mgpbas 20061 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑊)
1915, 18eleqtrdi 2839 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Base‘𝑊))
20 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑊) = (Base‘𝑊)
21 eqid 2730 . . . . . . . . . . . . 13 (0g𝑊) = (0g𝑊)
22 aks6d1c1.9 . . . . . . . . . . . . 13 𝐷 = (.g𝑊)
2320, 21, 22mulg0 19013 . . . . . . . . . . . 12 (𝐹 ∈ (Base‘𝑊) → (0𝐷𝐹) = (0g𝑊))
2419, 23syl 17 . . . . . . . . . . 11 (𝜑 → (0𝐷𝐹) = (0g𝑊))
25 eqid 2730 . . . . . . . . . . . . 13 (1r𝑆) = (1r𝑆)
2616, 25ringidval 20099 . . . . . . . . . . . 12 (1r𝑆) = (0g𝑊)
2726eqcomi 2739 . . . . . . . . . . 11 (0g𝑊) = (1r𝑆)
2824, 27eqtrdi 2781 . . . . . . . . . 10 (𝜑 → (0𝐷𝐹) = (1r𝑆))
2928adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (0𝐷𝐹) = (1r𝑆))
3029fveq2d 6865 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(0𝐷𝐹)) = (𝑂‘(1r𝑆)))
3130fveq1d 6863 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(0𝐷𝐹))‘𝑦) = ((𝑂‘(1r𝑆))‘𝑦))
3231oveq2d 7406 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(0𝐷𝐹))‘𝑦)) = (𝐸 ((𝑂‘(1r𝑆))‘𝑦)))
33 aks6d1c1.13 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Field)
3433fldcrngd 20658 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
35 crngring 20161 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
37 aks6d1c1.2 . . . . . . . . . . . . . 14 𝑆 = (Poly1𝐾)
38 aks6d1c1.8 . . . . . . . . . . . . . 14 𝐶 = (algSc‘𝑆)
39 eqid 2730 . . . . . . . . . . . . . 14 (1r𝐾) = (1r𝐾)
4037, 38, 39, 25ply1scl1 22186 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (𝐶‘(1r𝐾)) = (1r𝑆))
4136, 40syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐶‘(1r𝐾)) = (1r𝑆))
4241adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐶‘(1r𝐾)) = (1r𝑆))
4342eqcomd 2736 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r𝑆) = (𝐶‘(1r𝐾)))
4443fveq2d 6865 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(1r𝑆)) = (𝑂‘(𝐶‘(1r𝐾))))
4544fveq1d 6863 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(1r𝑆))‘𝑦) = ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦))
4645oveq2d 7406 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(1r𝑆))‘𝑦)) = (𝐸 ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦)))
47 aks6d1c1.11 . . . . . . . . . . 11 𝑂 = (eval1𝐾)
48 eqid 2730 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
4934adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
5048, 39ringidcl 20181 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
5136, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
5251adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r𝐾) ∈ (Base‘𝐾))
53 aks6d1c1.6 . . . . . . . . . . . . . . . . . 18 𝑉 = (mulGrp‘𝐾)
5453crngmgp 20157 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
5534, 54syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑉 ∈ CMnd)
56 aks6d1c1.15 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℕ)
5756nnnn0d 12510 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℕ0)
58 eqid 2730 . . . . . . . . . . . . . . . 16 (.g𝑉) = (.g𝑉)
5955, 57, 58isprimroot 42088 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑧 ∈ ℕ0 ((𝑧(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑧))))
6059biimpd 229 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑧 ∈ ℕ0 ((𝑧(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑧))))
6160imp 406 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑧 ∈ ℕ0 ((𝑧(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑧)))
6261simp1d 1142 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
6353, 48mgpbas 20061 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝑉)
6463eqcomi 2739 . . . . . . . . . . . 12 (Base‘𝑉) = (Base‘𝐾)
6562, 64eleqtrdi 2839 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
6647, 37, 48, 38, 14, 49, 52, 65evl1scad 22229 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘(1r𝐾)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦) = (1r𝐾)))
6766simprd 495 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦) = (1r𝐾))
6867oveq2d 7406 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦)) = (𝐸 (1r𝐾)))
6955cmnmndd 19741 . . . . . . . . . 10 (𝜑𝑉 ∈ Mnd)
7012simpld 494 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ)
7170nnnn0d 12510 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ0)
72 eqid 2730 . . . . . . . . . . 11 (Base‘𝑉) = (Base‘𝑉)
73 aks6d1c1.7 . . . . . . . . . . 11 = (.g𝑉)
7453, 39ringidval 20099 . . . . . . . . . . 11 (1r𝐾) = (0g𝑉)
7572, 73, 74mulgnn0z 19040 . . . . . . . . . 10 ((𝑉 ∈ Mnd ∧ 𝐸 ∈ ℕ0) → (𝐸 (1r𝐾)) = (1r𝐾))
7669, 71, 75syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐸 (1r𝐾)) = (1r𝐾))
7776adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (1r𝐾)) = (1r𝐾))
7869adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
7971adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈ ℕ0)
8063, 73mulgnn0cl 19029 . . . . . . . . . . . 12 ((𝑉 ∈ Mnd ∧ 𝐸 ∈ ℕ0𝑦 ∈ (Base‘𝐾)) → (𝐸 𝑦) ∈ (Base‘𝐾))
8178, 79, 65, 80syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 𝑦) ∈ (Base‘𝐾))
8247, 37, 48, 38, 14, 49, 52, 81evl1scad 22229 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐶‘(1r𝐾)) ∈ 𝐵 ∧ ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)) = (1r𝐾)))
8382simprd 495 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)) = (1r𝐾))
8483eqcomd 2736 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r𝐾) = ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)))
8568, 77, 843eqtrd 2769 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(𝐶‘(1r𝐾)))‘𝑦)) = ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)))
8642fveq2d 6865 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(𝐶‘(1r𝐾))) = (𝑂‘(1r𝑆)))
8786fveq1d 6863 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐶‘(1r𝐾)))‘(𝐸 𝑦)) = ((𝑂‘(1r𝑆))‘(𝐸 𝑦)))
8846, 85, 873eqtrd 2769 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(1r𝑆))‘𝑦)) = ((𝑂‘(1r𝑆))‘(𝐸 𝑦)))
8929eqcomd 2736 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (1r𝑆) = (0𝐷𝐹))
9089fveq2d 6865 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑂‘(1r𝑆)) = (𝑂‘(0𝐷𝐹)))
9190fveq1d 6863 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(1r𝑆))‘(𝐸 𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 𝑦)))
9232, 88, 913eqtrd 2769 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(0𝐷𝐹))‘𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 𝑦)))
9392ralrimiva 3126 . . . 4 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(0𝐷𝐹))‘𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 𝑦)))
9437ply1ring 22139 . . . . . . . 8 (𝐾 ∈ Ring → 𝑆 ∈ Ring)
9536, 94syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
9617, 25ringidcl 20181 . . . . . . 7 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
9795, 96syl 17 . . . . . 6 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
9828eqcomd 2736 . . . . . . 7 (𝜑 → (1r𝑆) = (0𝐷𝐹))
9914a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑆))
10099eqcomd 2736 . . . . . . 7 (𝜑 → (Base‘𝑆) = 𝐵)
10198, 100eleq12d 2823 . . . . . 6 (𝜑 → ((1r𝑆) ∈ (Base‘𝑆) ↔ (0𝐷𝐹) ∈ 𝐵))
10297, 101mpbid 232 . . . . 5 (𝜑 → (0𝐷𝐹) ∈ 𝐵)
10310, 102, 70aks6d1c1p1 42102 . . . 4 (𝜑 → (𝐸 (0𝐷𝐹) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(0𝐷𝐹))‘𝑦)) = ((𝑂‘(0𝐷𝐹))‘(𝐸 𝑦))))
10493, 103mpbird 257 . . 3 (𝜑𝐸 (0𝐷𝐹))
105 aks6d1c1.4 . . . . 5 𝑋 = (var1𝐾)
106 aks6d1c1.10 . . . . 5 𝑃 = (chr‘𝐾)
107 aks6d1c1.12 . . . . 5 + = (+g𝑆)
10833ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐾 ∈ Field)
109 aks6d1c1.14 . . . . . 6 (𝜑𝑃 ∈ ℙ)
110109ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑃 ∈ ℙ)
11156ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑅 ∈ ℕ)
112 aks6d1c1.18 . . . . . 6 (𝜑 → (𝑁 gcd 𝑅) = 1)
113112ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → (𝑁 gcd 𝑅) = 1)
114 aks6d1c1.17 . . . . . 6 (𝜑𝑃𝑁)
115114ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑃𝑁)
116 simpr 484 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐸 (𝑖𝐷𝐹))
11711ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐸 𝐹)
11810, 37, 14, 105, 16, 53, 73, 38, 22, 106, 47, 107, 108, 110, 111, 113, 115, 116, 117aks6d1c1p4 42106 . . . 4 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐸 ((𝑖𝐷𝐹)(+g𝑊)𝐹))
11916ringmgp 20155 . . . . . . . 8 (𝑆 ∈ Ring → 𝑊 ∈ Mnd)
12095, 119syl 17 . . . . . . 7 (𝜑𝑊 ∈ Mnd)
121120adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑊 ∈ Mnd)
122121adantr 480 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑊 ∈ Mnd)
123 simplr 768 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝑖 ∈ ℕ0)
12418a1i 11 . . . . . . . . . 10 (𝜑 → (Base‘𝑆) = (Base‘𝑊))
12599, 124eqtrd 2765 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑊))
126125eleq2d 2815 . . . . . . . 8 (𝜑 → (𝐹𝐵𝐹 ∈ (Base‘𝑊)))
12713, 126mpbid 232 . . . . . . 7 (𝜑𝐹 ∈ (Base‘𝑊))
128127adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐹 ∈ (Base‘𝑊))
129128adantr 480 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐹 ∈ (Base‘𝑊))
130 eqid 2730 . . . . . 6 (+g𝑊) = (+g𝑊)
13120, 22, 130mulgnn0p1 19024 . . . . 5 ((𝑊 ∈ Mnd ∧ 𝑖 ∈ ℕ0𝐹 ∈ (Base‘𝑊)) → ((𝑖 + 1)𝐷𝐹) = ((𝑖𝐷𝐹)(+g𝑊)𝐹))
132122, 123, 129, 131syl3anc 1373 . . . 4 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → ((𝑖 + 1)𝐷𝐹) = ((𝑖𝐷𝐹)(+g𝑊)𝐹))
133118, 132breqtrrd 5138 . . 3 (((𝜑𝑖 ∈ ℕ0) ∧ 𝐸 (𝑖𝐷𝐹)) → 𝐸 ((𝑖 + 1)𝐷𝐹))
1343, 5, 7, 9, 104, 133nn0indd 12638 . 2 ((𝜑𝐿 ∈ ℕ0) → 𝐸 (𝐿𝐷𝐹))
1351, 134mpdan 687 1 (𝜑𝐸 (𝐿𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  {copab 5172  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cn 12193  0cn0 12449  cdvds 16229   gcd cgcd 16471  cprime 16648  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668  .gcmg 19006  CMndccmn 19717  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150  Fieldcfield 20646  chrcchr 21418  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068  eval1ce1 22208   PrimRoots cprimroots 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-field 20648  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-ply1 22073  df-evl1 22210  df-primroots 42087
This theorem is referenced by:  aks6d1c1  42111
  Copyright terms: Public domain W3C validator