Step | Hyp | Ref
| Expression |
1 | | aks6d1c1p4.11 |
. . . . . . 7
⊢ 𝑂 = (eval1‘𝐾) |
2 | | aks6d1c1p4.2 |
. . . . . . 7
⊢ 𝑆 = (Poly1‘𝐾) |
3 | | eqid 2728 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | aks6d1c1p4.3 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑆) |
5 | | aks6d1c1p4.13 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Field) |
6 | 5 | fldcrngd 20644 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ CRing) |
7 | 6 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing) |
8 | | aks6d1c1p4.6 |
. . . . . . . . 9
⊢ 𝑉 = (mulGrp‘𝐾) |
9 | 8, 3 | mgpbas 20087 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝑉) |
10 | | aks6d1c1p4.7 |
. . . . . . . 8
⊢ ↑ =
(.g‘𝑉) |
11 | 8 | crngmgp 20188 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ CRing → 𝑉 ∈ CMnd) |
12 | 6, 11 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ CMnd) |
13 | 12 | cmnmndd 19766 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ Mnd) |
14 | 13 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd) |
15 | | aks6d1c1p4.1 |
. . . . . . . . . . . 12
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒 ↑ 𝑦)))} |
16 | | aks6d1c1p4.18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∼ 𝐹) |
17 | 15, 16 | aks6d1c1p1rcl 41611 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵)) |
18 | 17 | simpld 493 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ℕ) |
19 | 18 | nnnn0d 12570 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
20 | 19 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈
ℕ0) |
21 | | aks6d1c1p4.15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ ℕ) |
22 | 21 | nnnn0d 12570 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
23 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(.g‘𝑉) = (.g‘𝑉) |
24 | 12, 22, 23 | isprimroot 41596 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g‘𝑉)𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑉)𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙)))) |
25 | 24 | biimpd 228 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g‘𝑉)𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑉)𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙)))) |
26 | 25 | imp 405 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g‘𝑉)𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑉)𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙))) |
27 | 26 | simp1d 1139 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉)) |
28 | 27, 9 | eleqtrrdi 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾)) |
29 | 9, 10, 14, 20, 28 | mulgnn0cld 19057 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ 𝑦) ∈ (Base‘𝐾)) |
30 | 17 | simprd 494 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
31 | 30 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹 ∈ 𝐵) |
32 | | eqidd 2729 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
33 | 31, 32 | jca 510 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹 ∈ 𝐵 ∧ ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
34 | | aks6d1c1p4.19 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∼ 𝐺) |
35 | 15, 34 | aks6d1c1p1rcl 41611 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 ∈ ℕ ∧ 𝐺 ∈ 𝐵)) |
36 | 35 | simprd 494 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
37 | 36 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐺 ∈ 𝐵) |
38 | | eqidd 2729 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦))) |
39 | 37, 38 | jca 510 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺 ∈ 𝐵 ∧ ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)))) |
40 | | aks6d1c1p4.5 |
. . . . . . . . 9
⊢ 𝑊 = (mulGrp‘𝑆) |
41 | | eqid 2728 |
. . . . . . . . 9
⊢
(.r‘𝑆) = (.r‘𝑆) |
42 | 40, 41 | mgpplusg 20085 |
. . . . . . . 8
⊢
(.r‘𝑆) = (+g‘𝑊) |
43 | 42 | eqcomi 2737 |
. . . . . . 7
⊢
(+g‘𝑊) = (.r‘𝑆) |
44 | | eqid 2728 |
. . . . . . 7
⊢
(.r‘𝐾) = (.r‘𝐾) |
45 | 1, 2, 3, 4, 7, 29,
33, 39, 43, 44 | evl1muld 22269 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g‘𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘(𝐸 ↑ 𝑦)) = (((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))(.r‘𝐾)((𝑂‘𝐺)‘(𝐸 ↑ 𝑦))))) |
46 | 45 | simprd 494 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘(𝐸 ↑ 𝑦)) = (((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))(.r‘𝐾)((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)))) |
47 | 12 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ CMnd) |
48 | 1, 2, 3, 4, 7, 28,
31 | fveval1fvcl 22259 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝐾)) |
49 | 8 | eqcomi 2737 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘𝐾) =
𝑉 |
50 | 49 | fveq2i 6905 |
. . . . . . . . . . . . . 14
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘𝑉) |
51 | 9, 50 | eqtr4i 2759 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) |
52 | 51 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
53 | 52 | eleq2d 2815 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂‘𝐹)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂‘𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))) |
54 | 48, 53 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))) |
55 | 1, 2, 3, 4, 7, 28,
37 | fveval1fvcl 22259 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐺)‘𝑦) ∈ (Base‘𝐾)) |
56 | 52 | eleq2d 2815 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂‘𝐺)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂‘𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))) |
57 | 55, 56 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))) |
58 | 20, 54, 57 | 3jca 1125 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ∈ ℕ0 ∧ ((𝑂‘𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂‘𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))) |
59 | 49 | fveq2i 6905 |
. . . . . . . . . 10
⊢
(+g‘(mulGrp‘𝐾)) = (+g‘𝑉) |
60 | 50, 10, 59 | mulgnn0di 19787 |
. . . . . . . . 9
⊢ ((𝑉 ∈ CMnd ∧ (𝐸 ∈ ℕ0
∧ ((𝑂‘𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂‘𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))) → (𝐸 ↑ (((𝑂‘𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂‘𝐺)‘𝑦))) = ((𝐸 ↑ ((𝑂‘𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ↑ ((𝑂‘𝐺)‘𝑦)))) |
61 | 47, 58, 60 | syl2anc 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ (((𝑂‘𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂‘𝐺)‘𝑦))) = ((𝐸 ↑ ((𝑂‘𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ↑ ((𝑂‘𝐺)‘𝑦)))) |
62 | 8, 44 | mgpplusg 20085 |
. . . . . . . . . . . 12
⊢
(.r‘𝐾) = (+g‘𝑉) |
63 | 8 | fveq2i 6905 |
. . . . . . . . . . . 12
⊢
(+g‘𝑉) = (+g‘(mulGrp‘𝐾)) |
64 | 62, 63 | eqtri 2756 |
. . . . . . . . . . 11
⊢
(.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
66 | 65 | eqcomd 2734 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) →
(+g‘(mulGrp‘𝐾)) = (.r‘𝐾)) |
67 | | fveq2 6902 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → ((𝑂‘𝐹)‘𝑧) = ((𝑂‘𝐹)‘𝑦)) |
68 | 67 | oveq2d 7442 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = (𝐸 ↑ ((𝑂‘𝐹)‘𝑦))) |
69 | | oveq2 7434 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → (𝐸 ↑ 𝑧) = (𝐸 ↑ 𝑦)) |
70 | 69 | fveq2d 6906 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
71 | 68, 70 | eqeq12d 2744 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → ((𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)) ↔ (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
72 | 15, 30, 18 | aks6d1c1p1 41610 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ∼ 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)))) |
73 | 16, 72 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
74 | | fveq2 6902 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → ((𝑂‘𝐹)‘𝑦) = ((𝑂‘𝐹)‘𝑧)) |
75 | 74 | oveq2d 7442 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = (𝐸 ↑ ((𝑂‘𝐹)‘𝑧))) |
76 | | oveq2 7434 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝐸 ↑ 𝑦) = (𝐸 ↑ 𝑧)) |
77 | 76 | fveq2d 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧))) |
78 | 75, 77 | eqeq12d 2744 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ((𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)) ↔ (𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧)))) |
79 | 78 | cbvralvw 3232 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧))) |
80 | 73, 79 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧))) |
81 | 80 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐹)‘𝑧)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑧))) |
82 | | simpr 483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅)) |
83 | 71, 81, 82 | rspcdva 3612 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘𝐹)‘𝑦)) = ((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))) |
84 | | fveq2 6902 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → ((𝑂‘𝐺)‘𝑧) = ((𝑂‘𝐺)‘𝑦)) |
85 | 84 | oveq2d 7442 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝐸 ↑ ((𝑂‘𝐺)‘𝑧)) = (𝐸 ↑ ((𝑂‘𝐺)‘𝑦))) |
86 | 69 | fveq2d 6906 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → ((𝑂‘𝐺)‘(𝐸 ↑ 𝑧)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦))) |
87 | 85, 86 | eqeq12d 2744 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → ((𝐸 ↑ ((𝑂‘𝐺)‘𝑧)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑧)) ↔ (𝐸 ↑ ((𝑂‘𝐺)‘𝑦)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)))) |
88 | 15, 36, 18 | aks6d1c1p1 41610 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ∼ 𝐺 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐺)‘𝑦)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)))) |
89 | 34, 88 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐺)‘𝑦)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦))) |
90 | | fveq2 6902 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → ((𝑂‘𝐺)‘𝑦) = ((𝑂‘𝐺)‘𝑧)) |
91 | 90 | oveq2d 7442 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝐸 ↑ ((𝑂‘𝐺)‘𝑦)) = (𝐸 ↑ ((𝑂‘𝐺)‘𝑧))) |
92 | 76 | fveq2d 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑧))) |
93 | 91, 92 | eqeq12d 2744 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ((𝐸 ↑ ((𝑂‘𝐺)‘𝑦)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)) ↔ (𝐸 ↑ ((𝑂‘𝐺)‘𝑧)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑧)))) |
94 | 93 | cbvralvw 3232 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐺)‘𝑦)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐺)‘𝑧)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑧))) |
95 | 89, 94 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐺)‘𝑧)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑧))) |
96 | 95 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘𝐺)‘𝑧)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑧))) |
97 | 87, 96, 82 | rspcdva 3612 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘𝐺)‘𝑦)) = ((𝑂‘𝐺)‘(𝐸 ↑ 𝑦))) |
98 | 66, 83, 97 | oveq123d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐸 ↑ ((𝑂‘𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ↑ ((𝑂‘𝐺)‘𝑦))) = (((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))(.r‘𝐾)((𝑂‘𝐺)‘(𝐸 ↑ 𝑦)))) |
99 | 61, 98 | eqtr2d 2769 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))(.r‘𝐾)((𝑂‘𝐺)‘(𝐸 ↑ 𝑦))) = (𝐸 ↑ (((𝑂‘𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂‘𝐺)‘𝑦)))) |
100 | 64 | eqcomi 2737 |
. . . . . . . . . 10
⊢
(+g‘(mulGrp‘𝐾)) = (.r‘𝐾) |
101 | 100 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) →
(+g‘(mulGrp‘𝐾)) = (.r‘𝐾)) |
102 | 101 | oveqd 7443 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂‘𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂‘𝐺)‘𝑦)) = (((𝑂‘𝐹)‘𝑦)(.r‘𝐾)((𝑂‘𝐺)‘𝑦))) |
103 | 102 | oveq2d 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ (((𝑂‘𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂‘𝐺)‘𝑦))) = (𝐸 ↑ (((𝑂‘𝐹)‘𝑦)(.r‘𝐾)((𝑂‘𝐺)‘𝑦)))) |
104 | 99, 103 | eqtrd 2768 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))(.r‘𝐾)((𝑂‘𝐺)‘(𝐸 ↑ 𝑦))) = (𝐸 ↑ (((𝑂‘𝐹)‘𝑦)(.r‘𝐾)((𝑂‘𝐺)‘𝑦)))) |
105 | | eqidd 2729 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐹)‘𝑦) = ((𝑂‘𝐹)‘𝑦)) |
106 | 31, 105 | jca 510 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹 ∈ 𝐵 ∧ ((𝑂‘𝐹)‘𝑦) = ((𝑂‘𝐹)‘𝑦))) |
107 | | eqidd 2729 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝐺)‘𝑦) = ((𝑂‘𝐺)‘𝑦)) |
108 | 37, 107 | jca 510 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺 ∈ 𝐵 ∧ ((𝑂‘𝐺)‘𝑦) = ((𝑂‘𝐺)‘𝑦))) |
109 | 1, 2, 3, 4, 7, 28,
106, 108, 43, 44 | evl1muld 22269 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g‘𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘𝑦) = (((𝑂‘𝐹)‘𝑦)(.r‘𝐾)((𝑂‘𝐺)‘𝑦)))) |
110 | 109 | simprd 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘𝑦) = (((𝑂‘𝐹)‘𝑦)(.r‘𝐾)((𝑂‘𝐺)‘𝑦))) |
111 | 110 | eqcomd 2734 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂‘𝐹)‘𝑦)(.r‘𝐾)((𝑂‘𝐺)‘𝑦)) = ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘𝑦)) |
112 | 111 | oveq2d 7442 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ (((𝑂‘𝐹)‘𝑦)(.r‘𝐾)((𝑂‘𝐺)‘𝑦))) = (𝐸 ↑ ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘𝑦))) |
113 | 104, 112 | eqtrd 2768 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂‘𝐹)‘(𝐸 ↑ 𝑦))(.r‘𝐾)((𝑂‘𝐺)‘(𝐸 ↑ 𝑦))) = (𝐸 ↑ ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘𝑦))) |
114 | 46, 113 | eqtrd 2768 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘(𝐸 ↑ 𝑦)) = (𝐸 ↑ ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘𝑦))) |
115 | 114 | eqcomd 2734 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ↑ ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘(𝐸 ↑ 𝑦))) |
116 | 115 | ralrimiva 3143 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘(𝐸 ↑ 𝑦))) |
117 | 2 | ply1crng 22124 |
. . . . . 6
⊢ (𝐾 ∈ CRing → 𝑆 ∈ CRing) |
118 | 6, 117 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ CRing) |
119 | 118 | crngringd 20193 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ Ring) |
120 | 4, 43, 119, 30, 36 | ringcld 20206 |
. . 3
⊢ (𝜑 → (𝐹(+g‘𝑊)𝐺) ∈ 𝐵) |
121 | 15, 120, 18 | aks6d1c1p1 41610 |
. 2
⊢ (𝜑 → (𝐸 ∼ (𝐹(+g‘𝑊)𝐺) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ↑ ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g‘𝑊)𝐺))‘(𝐸 ↑ 𝑦)))) |
122 | 116, 121 | mpbird 256 |
1
⊢ (𝜑 → 𝐸 ∼ (𝐹(+g‘𝑊)𝐺)) |