Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p4 Structured version   Visualization version   GIF version

Theorem aks6d1c1p4 42071
Description: The product of polynomials is introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p4.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p4.2 𝑆 = (Poly1𝐾)
aks6d1c1p4.3 𝐵 = (Base‘𝑆)
aks6d1c1p4.4 𝑋 = (var1𝐾)
aks6d1c1p4.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p4.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p4.7 = (.g𝑉)
aks6d1c1p4.8 𝐶 = (algSc‘𝑆)
aks6d1c1p4.9 𝐷 = (.g𝑊)
aks6d1c1p4.10 𝑃 = (chr‘𝐾)
aks6d1c1p4.11 𝑂 = (eval1𝐾)
aks6d1c1p4.12 + = (+g𝑆)
aks6d1c1p4.13 (𝜑𝐾 ∈ Field)
aks6d1c1p4.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p4.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p4.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p4.17 (𝜑𝑃𝑁)
aks6d1c1p4.18 (𝜑𝐸 𝐹)
aks6d1c1p4.19 (𝜑𝐸 𝐺)
Assertion
Ref Expression
aks6d1c1p4 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝐵,𝑒,𝑓   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝐺,𝑓,𝑦   𝑒,𝑂,𝑓,𝑦   𝑅,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑒,𝑊,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝐷(𝑦,𝑒,𝑓)   𝑃(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p4
Dummy variables 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p4.11 . . . . . . 7 𝑂 = (eval1𝐾)
2 aks6d1c1p4.2 . . . . . . 7 𝑆 = (Poly1𝐾)
3 eqid 2734 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 aks6d1c1p4.3 . . . . . . 7 𝐵 = (Base‘𝑆)
5 aks6d1c1p4.13 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
65fldcrngd 20710 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
76adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
8 aks6d1c1p4.6 . . . . . . . . 9 𝑉 = (mulGrp‘𝐾)
98, 3mgpbas 20110 . . . . . . . 8 (Base‘𝐾) = (Base‘𝑉)
10 aks6d1c1p4.7 . . . . . . . 8 = (.g𝑉)
118crngmgp 20206 . . . . . . . . . . 11 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
126, 11syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ CMnd)
1312cmnmndd 19790 . . . . . . . . 9 (𝜑𝑉 ∈ Mnd)
1413adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
15 aks6d1c1p4.1 . . . . . . . . . . . 12 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
16 aks6d1c1p4.18 . . . . . . . . . . . 12 (𝜑𝐸 𝐹)
1715, 16aks6d1c1p1rcl 42068 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
1817simpld 494 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ)
1918nnnn0d 12570 . . . . . . . . 9 (𝜑𝐸 ∈ ℕ0)
2019adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈ ℕ0)
21 aks6d1c1p4.15 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
2221nnnn0d 12570 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
23 eqid 2734 . . . . . . . . . . . . 13 (.g𝑉) = (.g𝑉)
2412, 22, 23isprimroot 42053 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2524biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2625imp 406 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙)))
2726simp1d 1142 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
2827, 9eleqtrrdi 2844 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
299, 10, 14, 20, 28mulgnn0cld 19082 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 𝑦) ∈ (Base‘𝐾))
3017simprd 495 . . . . . . . . 9 (𝜑𝐹𝐵)
3130adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹𝐵)
32 eqidd 2735 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
3331, 32jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
34 aks6d1c1p4.19 . . . . . . . . . . 11 (𝜑𝐸 𝐺)
3515, 34aks6d1c1p1rcl 42068 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐺𝐵))
3635simprd 495 . . . . . . . . 9 (𝜑𝐺𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐺𝐵)
38 eqidd 2735 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
3937, 38jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
40 aks6d1c1p4.5 . . . . . . . . 9 𝑊 = (mulGrp‘𝑆)
41 eqid 2734 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
4240, 41mgpplusg 20109 . . . . . . . 8 (.r𝑆) = (+g𝑊)
4342eqcomi 2743 . . . . . . 7 (+g𝑊) = (.r𝑆)
44 eqid 2734 . . . . . . 7 (.r𝐾) = (.r𝐾)
451, 2, 3, 4, 7, 29, 33, 39, 43, 44evl1muld 22295 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦)))))
4645simprd 495 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
4712adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ CMnd)
481, 2, 3, 4, 7, 28, 31fveval1fvcl 22285 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾))
498eqcomi 2743 . . . . . . . . . . . . . . 15 (mulGrp‘𝐾) = 𝑉
5049fveq2i 6889 . . . . . . . . . . . . . 14 (Base‘(mulGrp‘𝐾)) = (Base‘𝑉)
519, 50eqtr4i 2760 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
5352eleq2d 2819 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5448, 53mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
551, 2, 3, 4, 7, 28, 37fveval1fvcl 22285 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾))
5652eleq2d 2819 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5755, 56mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
5820, 54, 573jca 1128 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5949fveq2i 6889 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (+g𝑉)
6050, 10, 59mulgnn0di 19811 . . . . . . . . 9 ((𝑉 ∈ CMnd ∧ (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
6147, 58, 60syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
628, 44mgpplusg 20109 . . . . . . . . . . . 12 (.r𝐾) = (+g𝑉)
638fveq2i 6889 . . . . . . . . . . . 12 (+g𝑉) = (+g‘(mulGrp‘𝐾))
6462, 63eqtri 2757 . . . . . . . . . . 11 (.r𝐾) = (+g‘(mulGrp‘𝐾))
6564a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
6665eqcomd 2740 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
67 fveq2 6886 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
6867oveq2d 7429 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐹)‘𝑧)) = (𝐸 ((𝑂𝐹)‘𝑦)))
69 oveq2 7421 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝐸 𝑧) = (𝐸 𝑦))
7069fveq2d 6890 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝐸 𝑧)) = ((𝑂𝐹)‘(𝐸 𝑦)))
7168, 70eqeq12d 2750 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7215, 30, 18aks6d1c1p1 42067 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7316, 72mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
74 fveq2 6886 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑧))
7574oveq2d 7429 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐹)‘𝑦)) = (𝐸 ((𝑂𝐹)‘𝑧)))
76 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝐸 𝑦) = (𝐸 𝑧))
7776fveq2d 6890 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑧)))
7875, 77eqeq12d 2750 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧))))
7978cbvralvw 3223 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8073, 79sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8180adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
82 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
8371, 81, 82rspcdva 3606 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
84 fveq2 6886 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐺)‘𝑧) = ((𝑂𝐺)‘𝑦))
8584oveq2d 7429 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐺)‘𝑧)) = (𝐸 ((𝑂𝐺)‘𝑦)))
8669fveq2d 6890 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐺)‘(𝐸 𝑧)) = ((𝑂𝐺)‘(𝐸 𝑦)))
8785, 86eqeq12d 2750 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8815, 36, 18aks6d1c1p1 42067 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐺 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8934, 88mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
90 fveq2 6886 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑧))
9190oveq2d 7429 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐺)‘𝑦)) = (𝐸 ((𝑂𝐺)‘𝑧)))
9276fveq2d 6890 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9391, 92eqeq12d 2750 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧))))
9493cbvralvw 3223 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9589, 94sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9695adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9787, 96, 82rspcdva 3606 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
9866, 83, 97oveq123d 7434 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
9961, 98eqtr2d 2770 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))))
10064eqcomi 2743 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (.r𝐾)
101100a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
102101oveqd 7430 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦)) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
103102oveq2d 7429 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
10499, 103eqtrd 2769 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
105 eqidd 2735 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦))
10631, 105jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦)))
107 eqidd 2735 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦))
10837, 107jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦)))
1091, 2, 3, 4, 7, 28, 106, 108, 43, 44evl1muld 22295 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
110109simprd 495 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
111110eqcomd 2740 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦))
112111oveq2d 7429 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
113104, 112eqtrd 2769 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
11446, 113eqtrd 2769 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
115114eqcomd 2740 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
116115ralrimiva 3133 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
1172ply1crng 22148 . . . . . 6 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
1186, 117syl 17 . . . . 5 (𝜑𝑆 ∈ CRing)
119118crngringd 20211 . . . 4 (𝜑𝑆 ∈ Ring)
1204, 43, 119, 30, 36ringcld 20225 . . 3 (𝜑 → (𝐹(+g𝑊)𝐺) ∈ 𝐵)
12115, 120, 18aks6d1c1p1 42067 . 2 (𝜑 → (𝐸 (𝐹(+g𝑊)𝐺) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦))))
122116, 121mpbird 257 1 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050   class class class wbr 5123  {copab 5185  cfv 6541  (class class class)co 7413  1c1 11138  cn 12248  0cn0 12509  cdvds 16272   gcd cgcd 16513  cprime 16690  Basecbs 17229  +gcplusg 17273  .rcmulr 17274  0gc0g 17455  Mndcmnd 18716  .gcmg 19054  CMndccmn 19766  mulGrpcmgp 20105  CRingccrg 20199  Fieldcfield 20698  chrcchr 21474  algSccascl 21826  var1cv1 22125  Poly1cpl1 22126  eval1ce1 22266   PrimRoots cprimroots 42051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14352  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-0g 17457  df-gsum 17458  df-prds 17463  df-pws 17465  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-ghm 19200  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-rhm 20440  df-subrng 20514  df-subrg 20538  df-field 20700  df-lmod 20828  df-lss 20898  df-lsp 20938  df-assa 21827  df-asp 21828  df-ascl 21829  df-psr 21883  df-mvr 21884  df-mpl 21885  df-opsr 21887  df-evls 22046  df-evl 22047  df-psr1 22129  df-ply1 22131  df-evl1 22268  df-primroots 42052
This theorem is referenced by:  aks6d1c1p6  42074  aks6d1c1  42076
  Copyright terms: Public domain W3C validator