Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p4 Structured version   Visualization version   GIF version

Theorem aks6d1c1p4 42094
Description: The product of polynomials is introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p4.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p4.2 𝑆 = (Poly1𝐾)
aks6d1c1p4.3 𝐵 = (Base‘𝑆)
aks6d1c1p4.4 𝑋 = (var1𝐾)
aks6d1c1p4.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p4.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p4.7 = (.g𝑉)
aks6d1c1p4.8 𝐶 = (algSc‘𝑆)
aks6d1c1p4.9 𝐷 = (.g𝑊)
aks6d1c1p4.10 𝑃 = (chr‘𝐾)
aks6d1c1p4.11 𝑂 = (eval1𝐾)
aks6d1c1p4.12 + = (+g𝑆)
aks6d1c1p4.13 (𝜑𝐾 ∈ Field)
aks6d1c1p4.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p4.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p4.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p4.17 (𝜑𝑃𝑁)
aks6d1c1p4.18 (𝜑𝐸 𝐹)
aks6d1c1p4.19 (𝜑𝐸 𝐺)
Assertion
Ref Expression
aks6d1c1p4 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝐵,𝑒,𝑓   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝐺,𝑓,𝑦   𝑒,𝑂,𝑓,𝑦   𝑅,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑒,𝑊,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝐷(𝑦,𝑒,𝑓)   𝑃(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p4
Dummy variables 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p4.11 . . . . . . 7 𝑂 = (eval1𝐾)
2 aks6d1c1p4.2 . . . . . . 7 𝑆 = (Poly1𝐾)
3 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 aks6d1c1p4.3 . . . . . . 7 𝐵 = (Base‘𝑆)
5 aks6d1c1p4.13 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
65fldcrngd 20627 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
76adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
8 aks6d1c1p4.6 . . . . . . . . 9 𝑉 = (mulGrp‘𝐾)
98, 3mgpbas 20030 . . . . . . . 8 (Base‘𝐾) = (Base‘𝑉)
10 aks6d1c1p4.7 . . . . . . . 8 = (.g𝑉)
118crngmgp 20126 . . . . . . . . . . 11 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
126, 11syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ CMnd)
1312cmnmndd 19683 . . . . . . . . 9 (𝜑𝑉 ∈ Mnd)
1413adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
15 aks6d1c1p4.1 . . . . . . . . . . . 12 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
16 aks6d1c1p4.18 . . . . . . . . . . . 12 (𝜑𝐸 𝐹)
1715, 16aks6d1c1p1rcl 42091 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
1817simpld 494 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ)
1918nnnn0d 12445 . . . . . . . . 9 (𝜑𝐸 ∈ ℕ0)
2019adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈ ℕ0)
21 aks6d1c1p4.15 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
2221nnnn0d 12445 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
23 eqid 2729 . . . . . . . . . . . . 13 (.g𝑉) = (.g𝑉)
2412, 22, 23isprimroot 42076 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2524biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2625imp 406 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙)))
2726simp1d 1142 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
2827, 9eleqtrrdi 2839 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
299, 10, 14, 20, 28mulgnn0cld 18974 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 𝑦) ∈ (Base‘𝐾))
3017simprd 495 . . . . . . . . 9 (𝜑𝐹𝐵)
3130adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹𝐵)
32 eqidd 2730 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
3331, 32jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
34 aks6d1c1p4.19 . . . . . . . . . . 11 (𝜑𝐸 𝐺)
3515, 34aks6d1c1p1rcl 42091 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐺𝐵))
3635simprd 495 . . . . . . . . 9 (𝜑𝐺𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐺𝐵)
38 eqidd 2730 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
3937, 38jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
40 aks6d1c1p4.5 . . . . . . . . 9 𝑊 = (mulGrp‘𝑆)
41 eqid 2729 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
4240, 41mgpplusg 20029 . . . . . . . 8 (.r𝑆) = (+g𝑊)
4342eqcomi 2738 . . . . . . 7 (+g𝑊) = (.r𝑆)
44 eqid 2729 . . . . . . 7 (.r𝐾) = (.r𝐾)
451, 2, 3, 4, 7, 29, 33, 39, 43, 44evl1muld 22228 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦)))))
4645simprd 495 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
4712adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ CMnd)
481, 2, 3, 4, 7, 28, 31fveval1fvcl 22218 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾))
498eqcomi 2738 . . . . . . . . . . . . . . 15 (mulGrp‘𝐾) = 𝑉
5049fveq2i 6825 . . . . . . . . . . . . . 14 (Base‘(mulGrp‘𝐾)) = (Base‘𝑉)
519, 50eqtr4i 2755 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
5352eleq2d 2814 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5448, 53mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
551, 2, 3, 4, 7, 28, 37fveval1fvcl 22218 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾))
5652eleq2d 2814 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5755, 56mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
5820, 54, 573jca 1128 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5949fveq2i 6825 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (+g𝑉)
6050, 10, 59mulgnn0di 19704 . . . . . . . . 9 ((𝑉 ∈ CMnd ∧ (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
6147, 58, 60syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
628, 44mgpplusg 20029 . . . . . . . . . . . 12 (.r𝐾) = (+g𝑉)
638fveq2i 6825 . . . . . . . . . . . 12 (+g𝑉) = (+g‘(mulGrp‘𝐾))
6462, 63eqtri 2752 . . . . . . . . . . 11 (.r𝐾) = (+g‘(mulGrp‘𝐾))
6564a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
6665eqcomd 2735 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
67 fveq2 6822 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
6867oveq2d 7365 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐹)‘𝑧)) = (𝐸 ((𝑂𝐹)‘𝑦)))
69 oveq2 7357 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝐸 𝑧) = (𝐸 𝑦))
7069fveq2d 6826 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝐸 𝑧)) = ((𝑂𝐹)‘(𝐸 𝑦)))
7168, 70eqeq12d 2745 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7215, 30, 18aks6d1c1p1 42090 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7316, 72mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
74 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑧))
7574oveq2d 7365 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐹)‘𝑦)) = (𝐸 ((𝑂𝐹)‘𝑧)))
76 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝐸 𝑦) = (𝐸 𝑧))
7776fveq2d 6826 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑧)))
7875, 77eqeq12d 2745 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧))))
7978cbvralvw 3207 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8073, 79sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8180adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
82 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
8371, 81, 82rspcdva 3578 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
84 fveq2 6822 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐺)‘𝑧) = ((𝑂𝐺)‘𝑦))
8584oveq2d 7365 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐺)‘𝑧)) = (𝐸 ((𝑂𝐺)‘𝑦)))
8669fveq2d 6826 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐺)‘(𝐸 𝑧)) = ((𝑂𝐺)‘(𝐸 𝑦)))
8785, 86eqeq12d 2745 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8815, 36, 18aks6d1c1p1 42090 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐺 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8934, 88mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
90 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑧))
9190oveq2d 7365 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐺)‘𝑦)) = (𝐸 ((𝑂𝐺)‘𝑧)))
9276fveq2d 6826 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9391, 92eqeq12d 2745 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧))))
9493cbvralvw 3207 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9589, 94sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9695adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9787, 96, 82rspcdva 3578 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
9866, 83, 97oveq123d 7370 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
9961, 98eqtr2d 2765 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))))
10064eqcomi 2738 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (.r𝐾)
101100a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
102101oveqd 7366 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦)) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
103102oveq2d 7365 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
10499, 103eqtrd 2764 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
105 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦))
10631, 105jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦)))
107 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦))
10837, 107jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦)))
1091, 2, 3, 4, 7, 28, 106, 108, 43, 44evl1muld 22228 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
110109simprd 495 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
111110eqcomd 2735 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦))
112111oveq2d 7365 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
113104, 112eqtrd 2764 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
11446, 113eqtrd 2764 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
115114eqcomd 2735 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
116115ralrimiva 3121 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
1172ply1crng 22081 . . . . . 6 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
1186, 117syl 17 . . . . 5 (𝜑𝑆 ∈ CRing)
119118crngringd 20131 . . . 4 (𝜑𝑆 ∈ Ring)
1204, 43, 119, 30, 36ringcld 20145 . . 3 (𝜑 → (𝐹(+g𝑊)𝐺) ∈ 𝐵)
12115, 120, 18aks6d1c1p1 42090 . 2 (𝜑 → (𝐸 (𝐹(+g𝑊)𝐺) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦))))
122116, 121mpbird 257 1 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  {copab 5154  cfv 6482  (class class class)co 7349  1c1 11010  cn 12128  0cn0 12384  cdvds 16163   gcd cgcd 16405  cprime 16582  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Mndcmnd 18608  .gcmg 18946  CMndccmn 19659  mulGrpcmgp 20025  CRingccrg 20119  Fieldcfield 20615  chrcchr 21408  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  eval1ce1 22199   PrimRoots cprimroots 42074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-ply1 22064  df-evl1 22201  df-primroots 42075
This theorem is referenced by:  aks6d1c1p6  42097  aks6d1c1  42099
  Copyright terms: Public domain W3C validator