Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p4 Structured version   Visualization version   GIF version

Theorem aks6d1c1p4 42112
Description: The product of polynomials is introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p4.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p4.2 𝑆 = (Poly1𝐾)
aks6d1c1p4.3 𝐵 = (Base‘𝑆)
aks6d1c1p4.4 𝑋 = (var1𝐾)
aks6d1c1p4.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p4.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p4.7 = (.g𝑉)
aks6d1c1p4.8 𝐶 = (algSc‘𝑆)
aks6d1c1p4.9 𝐷 = (.g𝑊)
aks6d1c1p4.10 𝑃 = (chr‘𝐾)
aks6d1c1p4.11 𝑂 = (eval1𝐾)
aks6d1c1p4.12 + = (+g𝑆)
aks6d1c1p4.13 (𝜑𝐾 ∈ Field)
aks6d1c1p4.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p4.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p4.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p4.17 (𝜑𝑃𝑁)
aks6d1c1p4.18 (𝜑𝐸 𝐹)
aks6d1c1p4.19 (𝜑𝐸 𝐺)
Assertion
Ref Expression
aks6d1c1p4 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝐵,𝑒,𝑓   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝐺,𝑓,𝑦   𝑒,𝑂,𝑓,𝑦   𝑅,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑒,𝑊,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝐷(𝑦,𝑒,𝑓)   𝑃(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p4
Dummy variables 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p4.11 . . . . . . 7 𝑂 = (eval1𝐾)
2 aks6d1c1p4.2 . . . . . . 7 𝑆 = (Poly1𝐾)
3 eqid 2737 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 aks6d1c1p4.3 . . . . . . 7 𝐵 = (Base‘𝑆)
5 aks6d1c1p4.13 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
65fldcrngd 20742 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
76adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
8 aks6d1c1p4.6 . . . . . . . . 9 𝑉 = (mulGrp‘𝐾)
98, 3mgpbas 20142 . . . . . . . 8 (Base‘𝐾) = (Base‘𝑉)
10 aks6d1c1p4.7 . . . . . . . 8 = (.g𝑉)
118crngmgp 20238 . . . . . . . . . . 11 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
126, 11syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ CMnd)
1312cmnmndd 19822 . . . . . . . . 9 (𝜑𝑉 ∈ Mnd)
1413adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
15 aks6d1c1p4.1 . . . . . . . . . . . 12 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
16 aks6d1c1p4.18 . . . . . . . . . . . 12 (𝜑𝐸 𝐹)
1715, 16aks6d1c1p1rcl 42109 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
1817simpld 494 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ)
1918nnnn0d 12587 . . . . . . . . 9 (𝜑𝐸 ∈ ℕ0)
2019adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈ ℕ0)
21 aks6d1c1p4.15 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
2221nnnn0d 12587 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
23 eqid 2737 . . . . . . . . . . . . 13 (.g𝑉) = (.g𝑉)
2412, 22, 23isprimroot 42094 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2524biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2625imp 406 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙)))
2726simp1d 1143 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
2827, 9eleqtrrdi 2852 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
299, 10, 14, 20, 28mulgnn0cld 19113 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 𝑦) ∈ (Base‘𝐾))
3017simprd 495 . . . . . . . . 9 (𝜑𝐹𝐵)
3130adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹𝐵)
32 eqidd 2738 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
3331, 32jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
34 aks6d1c1p4.19 . . . . . . . . . . 11 (𝜑𝐸 𝐺)
3515, 34aks6d1c1p1rcl 42109 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐺𝐵))
3635simprd 495 . . . . . . . . 9 (𝜑𝐺𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐺𝐵)
38 eqidd 2738 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
3937, 38jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
40 aks6d1c1p4.5 . . . . . . . . 9 𝑊 = (mulGrp‘𝑆)
41 eqid 2737 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
4240, 41mgpplusg 20141 . . . . . . . 8 (.r𝑆) = (+g𝑊)
4342eqcomi 2746 . . . . . . 7 (+g𝑊) = (.r𝑆)
44 eqid 2737 . . . . . . 7 (.r𝐾) = (.r𝐾)
451, 2, 3, 4, 7, 29, 33, 39, 43, 44evl1muld 22347 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦)))))
4645simprd 495 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
4712adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ CMnd)
481, 2, 3, 4, 7, 28, 31fveval1fvcl 22337 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾))
498eqcomi 2746 . . . . . . . . . . . . . . 15 (mulGrp‘𝐾) = 𝑉
5049fveq2i 6909 . . . . . . . . . . . . . 14 (Base‘(mulGrp‘𝐾)) = (Base‘𝑉)
519, 50eqtr4i 2768 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
5352eleq2d 2827 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5448, 53mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
551, 2, 3, 4, 7, 28, 37fveval1fvcl 22337 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾))
5652eleq2d 2827 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5755, 56mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
5820, 54, 573jca 1129 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5949fveq2i 6909 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (+g𝑉)
6050, 10, 59mulgnn0di 19843 . . . . . . . . 9 ((𝑉 ∈ CMnd ∧ (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
6147, 58, 60syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
628, 44mgpplusg 20141 . . . . . . . . . . . 12 (.r𝐾) = (+g𝑉)
638fveq2i 6909 . . . . . . . . . . . 12 (+g𝑉) = (+g‘(mulGrp‘𝐾))
6462, 63eqtri 2765 . . . . . . . . . . 11 (.r𝐾) = (+g‘(mulGrp‘𝐾))
6564a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
6665eqcomd 2743 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
67 fveq2 6906 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
6867oveq2d 7447 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐹)‘𝑧)) = (𝐸 ((𝑂𝐹)‘𝑦)))
69 oveq2 7439 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝐸 𝑧) = (𝐸 𝑦))
7069fveq2d 6910 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝐸 𝑧)) = ((𝑂𝐹)‘(𝐸 𝑦)))
7168, 70eqeq12d 2753 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7215, 30, 18aks6d1c1p1 42108 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7316, 72mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
74 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑧))
7574oveq2d 7447 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐹)‘𝑦)) = (𝐸 ((𝑂𝐹)‘𝑧)))
76 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝐸 𝑦) = (𝐸 𝑧))
7776fveq2d 6910 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑧)))
7875, 77eqeq12d 2753 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧))))
7978cbvralvw 3237 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8073, 79sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8180adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
82 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
8371, 81, 82rspcdva 3623 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
84 fveq2 6906 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐺)‘𝑧) = ((𝑂𝐺)‘𝑦))
8584oveq2d 7447 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐺)‘𝑧)) = (𝐸 ((𝑂𝐺)‘𝑦)))
8669fveq2d 6910 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐺)‘(𝐸 𝑧)) = ((𝑂𝐺)‘(𝐸 𝑦)))
8785, 86eqeq12d 2753 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8815, 36, 18aks6d1c1p1 42108 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐺 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8934, 88mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
90 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑧))
9190oveq2d 7447 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐺)‘𝑦)) = (𝐸 ((𝑂𝐺)‘𝑧)))
9276fveq2d 6910 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9391, 92eqeq12d 2753 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧))))
9493cbvralvw 3237 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9589, 94sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9695adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9787, 96, 82rspcdva 3623 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
9866, 83, 97oveq123d 7452 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
9961, 98eqtr2d 2778 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))))
10064eqcomi 2746 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (.r𝐾)
101100a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
102101oveqd 7448 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦)) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
103102oveq2d 7447 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
10499, 103eqtrd 2777 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
105 eqidd 2738 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦))
10631, 105jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦)))
107 eqidd 2738 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦))
10837, 107jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦)))
1091, 2, 3, 4, 7, 28, 106, 108, 43, 44evl1muld 22347 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
110109simprd 495 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
111110eqcomd 2743 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦))
112111oveq2d 7447 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
113104, 112eqtrd 2777 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
11446, 113eqtrd 2777 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
115114eqcomd 2743 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
116115ralrimiva 3146 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
1172ply1crng 22200 . . . . . 6 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
1186, 117syl 17 . . . . 5 (𝜑𝑆 ∈ CRing)
119118crngringd 20243 . . . 4 (𝜑𝑆 ∈ Ring)
1204, 43, 119, 30, 36ringcld 20257 . . 3 (𝜑 → (𝐹(+g𝑊)𝐺) ∈ 𝐵)
12115, 120, 18aks6d1c1p1 42108 . 2 (𝜑 → (𝐸 (𝐹(+g𝑊)𝐺) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦))))
122116, 121mpbird 257 1 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  {copab 5205  cfv 6561  (class class class)co 7431  1c1 11156  cn 12266  0cn0 12526  cdvds 16290   gcd cgcd 16531  cprime 16708  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  0gc0g 17484  Mndcmnd 18747  .gcmg 19085  CMndccmn 19798  mulGrpcmgp 20137  CRingccrg 20231  Fieldcfield 20730  chrcchr 21512  algSccascl 21872  var1cv1 22177  Poly1cpl1 22178  eval1ce1 22318   PrimRoots cprimroots 42092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-field 20732  df-lmod 20860  df-lss 20930  df-lsp 20970  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-ply1 22183  df-evl1 22320  df-primroots 42093
This theorem is referenced by:  aks6d1c1p6  42115  aks6d1c1  42117
  Copyright terms: Public domain W3C validator