Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p4 Structured version   Visualization version   GIF version

Theorem aks6d1c1p4 42124
Description: The product of polynomials is introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p4.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p4.2 𝑆 = (Poly1𝐾)
aks6d1c1p4.3 𝐵 = (Base‘𝑆)
aks6d1c1p4.4 𝑋 = (var1𝐾)
aks6d1c1p4.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p4.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p4.7 = (.g𝑉)
aks6d1c1p4.8 𝐶 = (algSc‘𝑆)
aks6d1c1p4.9 𝐷 = (.g𝑊)
aks6d1c1p4.10 𝑃 = (chr‘𝐾)
aks6d1c1p4.11 𝑂 = (eval1𝐾)
aks6d1c1p4.12 + = (+g𝑆)
aks6d1c1p4.13 (𝜑𝐾 ∈ Field)
aks6d1c1p4.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p4.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p4.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p4.17 (𝜑𝑃𝑁)
aks6d1c1p4.18 (𝜑𝐸 𝐹)
aks6d1c1p4.19 (𝜑𝐸 𝐺)
Assertion
Ref Expression
aks6d1c1p4 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝐵,𝑒,𝑓   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝐺,𝑓,𝑦   𝑒,𝑂,𝑓,𝑦   𝑅,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑒,𝑊,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝐷(𝑦,𝑒,𝑓)   𝑃(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p4
Dummy variables 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p4.11 . . . . . . 7 𝑂 = (eval1𝐾)
2 aks6d1c1p4.2 . . . . . . 7 𝑆 = (Poly1𝐾)
3 eqid 2735 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 aks6d1c1p4.3 . . . . . . 7 𝐵 = (Base‘𝑆)
5 aks6d1c1p4.13 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
65fldcrngd 20702 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
76adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
8 aks6d1c1p4.6 . . . . . . . . 9 𝑉 = (mulGrp‘𝐾)
98, 3mgpbas 20105 . . . . . . . 8 (Base‘𝐾) = (Base‘𝑉)
10 aks6d1c1p4.7 . . . . . . . 8 = (.g𝑉)
118crngmgp 20201 . . . . . . . . . . 11 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
126, 11syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ CMnd)
1312cmnmndd 19785 . . . . . . . . 9 (𝜑𝑉 ∈ Mnd)
1413adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
15 aks6d1c1p4.1 . . . . . . . . . . . 12 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
16 aks6d1c1p4.18 . . . . . . . . . . . 12 (𝜑𝐸 𝐹)
1715, 16aks6d1c1p1rcl 42121 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
1817simpld 494 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ)
1918nnnn0d 12562 . . . . . . . . 9 (𝜑𝐸 ∈ ℕ0)
2019adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈ ℕ0)
21 aks6d1c1p4.15 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
2221nnnn0d 12562 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
23 eqid 2735 . . . . . . . . . . . . 13 (.g𝑉) = (.g𝑉)
2412, 22, 23isprimroot 42106 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2524biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2625imp 406 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙)))
2726simp1d 1142 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
2827, 9eleqtrrdi 2845 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
299, 10, 14, 20, 28mulgnn0cld 19078 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 𝑦) ∈ (Base‘𝐾))
3017simprd 495 . . . . . . . . 9 (𝜑𝐹𝐵)
3130adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹𝐵)
32 eqidd 2736 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
3331, 32jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
34 aks6d1c1p4.19 . . . . . . . . . . 11 (𝜑𝐸 𝐺)
3515, 34aks6d1c1p1rcl 42121 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐺𝐵))
3635simprd 495 . . . . . . . . 9 (𝜑𝐺𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐺𝐵)
38 eqidd 2736 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
3937, 38jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
40 aks6d1c1p4.5 . . . . . . . . 9 𝑊 = (mulGrp‘𝑆)
41 eqid 2735 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
4240, 41mgpplusg 20104 . . . . . . . 8 (.r𝑆) = (+g𝑊)
4342eqcomi 2744 . . . . . . 7 (+g𝑊) = (.r𝑆)
44 eqid 2735 . . . . . . 7 (.r𝐾) = (.r𝐾)
451, 2, 3, 4, 7, 29, 33, 39, 43, 44evl1muld 22281 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦)))))
4645simprd 495 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
4712adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ CMnd)
481, 2, 3, 4, 7, 28, 31fveval1fvcl 22271 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾))
498eqcomi 2744 . . . . . . . . . . . . . . 15 (mulGrp‘𝐾) = 𝑉
5049fveq2i 6879 . . . . . . . . . . . . . 14 (Base‘(mulGrp‘𝐾)) = (Base‘𝑉)
519, 50eqtr4i 2761 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
5352eleq2d 2820 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5448, 53mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
551, 2, 3, 4, 7, 28, 37fveval1fvcl 22271 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾))
5652eleq2d 2820 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5755, 56mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
5820, 54, 573jca 1128 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5949fveq2i 6879 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (+g𝑉)
6050, 10, 59mulgnn0di 19806 . . . . . . . . 9 ((𝑉 ∈ CMnd ∧ (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
6147, 58, 60syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
628, 44mgpplusg 20104 . . . . . . . . . . . 12 (.r𝐾) = (+g𝑉)
638fveq2i 6879 . . . . . . . . . . . 12 (+g𝑉) = (+g‘(mulGrp‘𝐾))
6462, 63eqtri 2758 . . . . . . . . . . 11 (.r𝐾) = (+g‘(mulGrp‘𝐾))
6564a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
6665eqcomd 2741 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
67 fveq2 6876 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
6867oveq2d 7421 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐹)‘𝑧)) = (𝐸 ((𝑂𝐹)‘𝑦)))
69 oveq2 7413 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝐸 𝑧) = (𝐸 𝑦))
7069fveq2d 6880 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝐸 𝑧)) = ((𝑂𝐹)‘(𝐸 𝑦)))
7168, 70eqeq12d 2751 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7215, 30, 18aks6d1c1p1 42120 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7316, 72mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
74 fveq2 6876 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑧))
7574oveq2d 7421 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐹)‘𝑦)) = (𝐸 ((𝑂𝐹)‘𝑧)))
76 oveq2 7413 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝐸 𝑦) = (𝐸 𝑧))
7776fveq2d 6880 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑧)))
7875, 77eqeq12d 2751 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧))))
7978cbvralvw 3220 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8073, 79sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8180adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
82 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
8371, 81, 82rspcdva 3602 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
84 fveq2 6876 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐺)‘𝑧) = ((𝑂𝐺)‘𝑦))
8584oveq2d 7421 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐺)‘𝑧)) = (𝐸 ((𝑂𝐺)‘𝑦)))
8669fveq2d 6880 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐺)‘(𝐸 𝑧)) = ((𝑂𝐺)‘(𝐸 𝑦)))
8785, 86eqeq12d 2751 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8815, 36, 18aks6d1c1p1 42120 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐺 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8934, 88mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
90 fveq2 6876 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑧))
9190oveq2d 7421 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐺)‘𝑦)) = (𝐸 ((𝑂𝐺)‘𝑧)))
9276fveq2d 6880 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9391, 92eqeq12d 2751 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧))))
9493cbvralvw 3220 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9589, 94sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9695adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9787, 96, 82rspcdva 3602 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
9866, 83, 97oveq123d 7426 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
9961, 98eqtr2d 2771 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))))
10064eqcomi 2744 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (.r𝐾)
101100a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
102101oveqd 7422 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦)) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
103102oveq2d 7421 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
10499, 103eqtrd 2770 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
105 eqidd 2736 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦))
10631, 105jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦)))
107 eqidd 2736 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦))
10837, 107jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦)))
1091, 2, 3, 4, 7, 28, 106, 108, 43, 44evl1muld 22281 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
110109simprd 495 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
111110eqcomd 2741 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦))
112111oveq2d 7421 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
113104, 112eqtrd 2770 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
11446, 113eqtrd 2770 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
115114eqcomd 2741 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
116115ralrimiva 3132 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
1172ply1crng 22134 . . . . . 6 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
1186, 117syl 17 . . . . 5 (𝜑𝑆 ∈ CRing)
119118crngringd 20206 . . . 4 (𝜑𝑆 ∈ Ring)
1204, 43, 119, 30, 36ringcld 20220 . . 3 (𝜑 → (𝐹(+g𝑊)𝐺) ∈ 𝐵)
12115, 120, 18aks6d1c1p1 42120 . 2 (𝜑 → (𝐸 (𝐹(+g𝑊)𝐺) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦))))
122116, 121mpbird 257 1 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  {copab 5181  cfv 6531  (class class class)co 7405  1c1 11130  cn 12240  0cn0 12501  cdvds 16272   gcd cgcd 16513  cprime 16690  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  0gc0g 17453  Mndcmnd 18712  .gcmg 19050  CMndccmn 19761  mulGrpcmgp 20100  CRingccrg 20194  Fieldcfield 20690  chrcchr 21462  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112  eval1ce1 22252   PrimRoots cprimroots 42104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-field 20692  df-lmod 20819  df-lss 20889  df-lsp 20929  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-ply1 22117  df-evl1 22254  df-primroots 42105
This theorem is referenced by:  aks6d1c1p6  42127  aks6d1c1  42129
  Copyright terms: Public domain W3C validator