Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1p4 Structured version   Visualization version   GIF version

Theorem aks6d1c1p4 42099
Description: The product of polynomials is introspective. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1p4.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1p4.2 𝑆 = (Poly1𝐾)
aks6d1c1p4.3 𝐵 = (Base‘𝑆)
aks6d1c1p4.4 𝑋 = (var1𝐾)
aks6d1c1p4.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1p4.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1p4.7 = (.g𝑉)
aks6d1c1p4.8 𝐶 = (algSc‘𝑆)
aks6d1c1p4.9 𝐷 = (.g𝑊)
aks6d1c1p4.10 𝑃 = (chr‘𝐾)
aks6d1c1p4.11 𝑂 = (eval1𝐾)
aks6d1c1p4.12 + = (+g𝑆)
aks6d1c1p4.13 (𝜑𝐾 ∈ Field)
aks6d1c1p4.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1p4.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1p4.16 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1p4.17 (𝜑𝑃𝑁)
aks6d1c1p4.18 (𝜑𝐸 𝐹)
aks6d1c1p4.19 (𝜑𝐸 𝐺)
Assertion
Ref Expression
aks6d1c1p4 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Distinct variable groups:   ,𝑒,𝑓,𝑦   𝐵,𝑒,𝑓   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑒,𝐺,𝑓,𝑦   𝑒,𝑂,𝑓,𝑦   𝑅,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑒,𝑊,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐵(𝑦)   𝐶(𝑦,𝑒,𝑓)   𝐷(𝑦,𝑒,𝑓)   𝑃(𝑦,𝑒,𝑓)   + (𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑒,𝑓)   𝑁(𝑦,𝑒,𝑓)   𝑋(𝑦,𝑒,𝑓)

Proof of Theorem aks6d1c1p4
Dummy variables 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1p4.11 . . . . . . 7 𝑂 = (eval1𝐾)
2 aks6d1c1p4.2 . . . . . . 7 𝑆 = (Poly1𝐾)
3 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 aks6d1c1p4.3 . . . . . . 7 𝐵 = (Base‘𝑆)
5 aks6d1c1p4.13 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
65fldcrngd 20651 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
76adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing)
8 aks6d1c1p4.6 . . . . . . . . 9 𝑉 = (mulGrp‘𝐾)
98, 3mgpbas 20054 . . . . . . . 8 (Base‘𝐾) = (Base‘𝑉)
10 aks6d1c1p4.7 . . . . . . . 8 = (.g𝑉)
118crngmgp 20150 . . . . . . . . . . 11 (𝐾 ∈ CRing → 𝑉 ∈ CMnd)
126, 11syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ CMnd)
1312cmnmndd 19734 . . . . . . . . 9 (𝜑𝑉 ∈ Mnd)
1413adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd)
15 aks6d1c1p4.1 . . . . . . . . . . . 12 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
16 aks6d1c1p4.18 . . . . . . . . . . . 12 (𝜑𝐸 𝐹)
1715, 16aks6d1c1p1rcl 42096 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐹𝐵))
1817simpld 494 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ)
1918nnnn0d 12503 . . . . . . . . 9 (𝜑𝐸 ∈ ℕ0)
2019adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐸 ∈ ℕ0)
21 aks6d1c1p4.15 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
2221nnnn0d 12503 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
23 eqid 2729 . . . . . . . . . . . . 13 (.g𝑉) = (.g𝑉)
2412, 22, 23isprimroot 42081 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2524biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙))))
2625imp 406 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅(.g𝑉)𝑦) = (0g𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑉)𝑦) = (0g𝑉) → 𝑅𝑙)))
2726simp1d 1142 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉))
2827, 9eleqtrrdi 2839 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾))
299, 10, 14, 20, 28mulgnn0cld 19027 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 𝑦) ∈ (Base‘𝐾))
3017simprd 495 . . . . . . . . 9 (𝜑𝐹𝐵)
3130adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐹𝐵)
32 eqidd 2730 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
3331, 32jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
34 aks6d1c1p4.19 . . . . . . . . . . 11 (𝜑𝐸 𝐺)
3515, 34aks6d1c1p1rcl 42096 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ ℕ ∧ 𝐺𝐵))
3635simprd 495 . . . . . . . . 9 (𝜑𝐺𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐺𝐵)
38 eqidd 2730 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
3937, 38jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
40 aks6d1c1p4.5 . . . . . . . . 9 𝑊 = (mulGrp‘𝑆)
41 eqid 2729 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
4240, 41mgpplusg 20053 . . . . . . . 8 (.r𝑆) = (+g𝑊)
4342eqcomi 2738 . . . . . . 7 (+g𝑊) = (.r𝑆)
44 eqid 2729 . . . . . . 7 (.r𝐾) = (.r𝐾)
451, 2, 3, 4, 7, 29, 33, 39, 43, 44evl1muld 22230 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦)))))
4645simprd 495 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
4712adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ CMnd)
481, 2, 3, 4, 7, 28, 31fveval1fvcl 22220 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾))
498eqcomi 2738 . . . . . . . . . . . . . . 15 (mulGrp‘𝐾) = 𝑉
5049fveq2i 6861 . . . . . . . . . . . . . 14 (Base‘(mulGrp‘𝐾)) = (Base‘𝑉)
519, 50eqtr4i 2755 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
5352eleq2d 2814 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5448, 53mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
551, 2, 3, 4, 7, 28, 37fveval1fvcl 22220 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾))
5652eleq2d 2814 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐺)‘𝑦) ∈ (Base‘𝐾) ↔ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5755, 56mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))
5820, 54, 573jca 1128 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾))))
5949fveq2i 6861 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (+g𝑉)
6050, 10, 59mulgnn0di 19755 . . . . . . . . 9 ((𝑉 ∈ CMnd ∧ (𝐸 ∈ ℕ0 ∧ ((𝑂𝐹)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)) ∧ ((𝑂𝐺)‘𝑦) ∈ (Base‘(mulGrp‘𝐾)))) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
6147, 58, 60syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))))
628, 44mgpplusg 20053 . . . . . . . . . . . 12 (.r𝐾) = (+g𝑉)
638fveq2i 6861 . . . . . . . . . . . 12 (+g𝑉) = (+g‘(mulGrp‘𝐾))
6462, 63eqtri 2752 . . . . . . . . . . 11 (.r𝐾) = (+g‘(mulGrp‘𝐾))
6564a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
6665eqcomd 2735 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
67 fveq2 6858 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐹)‘𝑧) = ((𝑂𝐹)‘𝑦))
6867oveq2d 7403 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐹)‘𝑧)) = (𝐸 ((𝑂𝐹)‘𝑦)))
69 oveq2 7395 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝐸 𝑧) = (𝐸 𝑦))
7069fveq2d 6862 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐹)‘(𝐸 𝑧)) = ((𝑂𝐹)‘(𝐸 𝑦)))
7168, 70eqeq12d 2745 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7215, 30, 18aks6d1c1p1 42095 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐹 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦))))
7316, 72mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
74 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑧))
7574oveq2d 7403 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐹)‘𝑦)) = (𝐸 ((𝑂𝐹)‘𝑧)))
76 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝐸 𝑦) = (𝐸 𝑧))
7776fveq2d 6862 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐹)‘(𝐸 𝑦)) = ((𝑂𝐹)‘(𝐸 𝑧)))
7875, 77eqeq12d 2745 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧))))
7978cbvralvw 3215 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8073, 79sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
8180adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐹)‘𝑧)) = ((𝑂𝐹)‘(𝐸 𝑧)))
82 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (𝑉 PrimRoots 𝑅))
8371, 81, 82rspcdva 3589 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐹)‘𝑦)) = ((𝑂𝐹)‘(𝐸 𝑦)))
84 fveq2 6858 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑂𝐺)‘𝑧) = ((𝑂𝐺)‘𝑦))
8584oveq2d 7403 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐸 ((𝑂𝐺)‘𝑧)) = (𝐸 ((𝑂𝐺)‘𝑦)))
8669fveq2d 6862 . . . . . . . . . . 11 (𝑧 = 𝑦 → ((𝑂𝐺)‘(𝐸 𝑧)) = ((𝑂𝐺)‘(𝐸 𝑦)))
8785, 86eqeq12d 2745 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)) ↔ (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8815, 36, 18aks6d1c1p1 42095 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝐺 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦))))
8934, 88mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
90 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑧))
9190oveq2d 7403 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐸 ((𝑂𝐺)‘𝑦)) = (𝐸 ((𝑂𝐺)‘𝑧)))
9276fveq2d 6862 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑂𝐺)‘(𝐸 𝑦)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9391, 92eqeq12d 2745 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ (𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧))))
9493cbvralvw 3215 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)) ↔ ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9589, 94sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9695adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ∀𝑧 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂𝐺)‘𝑧)) = ((𝑂𝐺)‘(𝐸 𝑧)))
9787, 96, 82rspcdva 3589 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂𝐺)‘𝑦)) = ((𝑂𝐺)‘(𝐸 𝑦)))
9866, 83, 97oveq123d 7408 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐸 ((𝑂𝐹)‘𝑦))(+g‘(mulGrp‘𝐾))(𝐸 ((𝑂𝐺)‘𝑦))) = (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))))
9961, 98eqtr2d 2765 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))))
10064eqcomi 2738 . . . . . . . . . 10 (+g‘(mulGrp‘𝐾)) = (.r𝐾)
101100a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
102101oveqd 7404 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦)) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
103102oveq2d 7403 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(+g‘(mulGrp‘𝐾))((𝑂𝐺)‘𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
10499, 103eqtrd 2764 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
105 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦))
10631, 105jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐹𝐵 ∧ ((𝑂𝐹)‘𝑦) = ((𝑂𝐹)‘𝑦)))
107 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦))
10837, 107jca 511 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐺𝐵 ∧ ((𝑂𝐺)‘𝑦) = ((𝑂𝐺)‘𝑦)))
1091, 2, 3, 4, 7, 28, 106, 108, 43, 44evl1muld 22230 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝐹(+g𝑊)𝐺) ∈ 𝐵 ∧ ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))))
110109simprd 495 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦) = (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)))
111110eqcomd 2735 . . . . . . 7 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦))
112111oveq2d 7403 . . . . . 6 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 (((𝑂𝐹)‘𝑦)(.r𝐾)((𝑂𝐺)‘𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
113104, 112eqtrd 2764 . . . . 5 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (((𝑂𝐹)‘(𝐸 𝑦))(.r𝐾)((𝑂𝐺)‘(𝐸 𝑦))) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
11446, 113eqtrd 2764 . . . 4 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)) = (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)))
115114eqcomd 2735 . . 3 ((𝜑𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
116115ralrimiva 3125 . 2 (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦)))
1172ply1crng 22083 . . . . . 6 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
1186, 117syl 17 . . . . 5 (𝜑𝑆 ∈ CRing)
119118crngringd 20155 . . . 4 (𝜑𝑆 ∈ Ring)
1204, 43, 119, 30, 36ringcld 20169 . . 3 (𝜑 → (𝐹(+g𝑊)𝐺) ∈ 𝐵)
12115, 120, 18aks6d1c1p1 42095 . 2 (𝜑 → (𝐸 (𝐹(+g𝑊)𝐺) ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐸 ((𝑂‘(𝐹(+g𝑊)𝐺))‘𝑦)) = ((𝑂‘(𝐹(+g𝑊)𝐺))‘(𝐸 𝑦))))
122116, 121mpbird 257 1 (𝜑𝐸 (𝐹(+g𝑊)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  1c1 11069  cn 12186  0cn0 12442  cdvds 16222   gcd cgcd 16464  cprime 16641  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  CRingccrg 20143  Fieldcfield 20639  chrcchr 21411  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  eval1ce1 22201   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-ply1 22066  df-evl1 22203  df-primroots 42080
This theorem is referenced by:  aks6d1c1p6  42102  aks6d1c1  42104
  Copyright terms: Public domain W3C validator