![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atncvrN | Structured version Visualization version GIF version |
Description: Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atncvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atncvr.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atncvrN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
2 | atncvr.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atn0 39304 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
4 | 3 | 3adant3 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
5 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 5, 2 | atbase 39285 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
7 | eqid 2737 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | atncvr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
9 | 5, 7, 1, 8, 2 | atcvreq0 39310 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
10 | 6, 9 | syl3an2 1165 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
11 | 10 | necon3bbid 2978 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃𝐶𝑄 ↔ 𝑃 ≠ (0.‘𝐾))) |
12 | 4, 11 | mpbird 257 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5151 ‘cfv 6569 Basecbs 17254 lecple 17314 0.cp0 18490 ⋖ ccvr 39258 Atomscatm 39259 AtLatcal 39260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-proset 18361 df-poset 18380 df-plt 18397 df-glb 18414 df-p0 18492 df-lat 18499 df-covers 39262 df-ats 39263 df-atl 39294 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |