Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atncvrN | Structured version Visualization version GIF version |
Description: Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atncvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atncvr.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atncvrN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
2 | atncvr.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atn0 37249 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
4 | 3 | 3adant3 1130 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
5 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 5, 2 | atbase 37230 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
7 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | atncvr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
9 | 5, 7, 1, 8, 2 | atcvreq0 37255 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
10 | 6, 9 | syl3an2 1162 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
11 | 10 | necon3bbid 2980 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃𝐶𝑄 ↔ 𝑃 ≠ (0.‘𝐾))) |
12 | 4, 11 | mpbird 256 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 0.cp0 18056 ⋖ ccvr 37203 Atomscatm 37204 AtLatcal 37205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-proset 17928 df-poset 17946 df-plt 17963 df-glb 17980 df-p0 18058 df-lat 18065 df-covers 37207 df-ats 37208 df-atl 37239 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |