Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atncvrN Structured version   Visualization version   GIF version

Theorem atncvrN 36511
Description: Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atncvr.c 𝐶 = ( ⋖ ‘𝐾)
atncvr.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atncvrN ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃𝐶𝑄)

Proof of Theorem atncvrN
StepHypRef Expression
1 eqid 2824 . . . 4 (0.‘𝐾) = (0.‘𝐾)
2 atncvr.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2atn0 36504 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃 ≠ (0.‘𝐾))
433adant3 1129 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝑃 ≠ (0.‘𝐾))
5 eqid 2824 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
65, 2atbase 36485 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
7 eqid 2824 . . . . 5 (le‘𝐾) = (le‘𝐾)
8 atncvr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
95, 7, 1, 8, 2atcvreq0 36510 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (𝑃𝐶𝑄𝑃 = (0.‘𝐾)))
106, 9syl3an2 1161 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝐶𝑄𝑃 = (0.‘𝐾)))
1110necon3bbid 3050 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (¬ 𝑃𝐶𝑄𝑃 ≠ (0.‘𝐾)))
124, 11mpbird 260 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃𝐶𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2115  wne 3013   class class class wbr 5047  cfv 6336  Basecbs 16472  lecple 16561  0.cp0 17636  ccvr 36458  Atomscatm 36459  AtLatcal 36460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-proset 17527  df-poset 17545  df-plt 17557  df-glb 17574  df-p0 17638  df-lat 17645  df-covers 36462  df-ats 36463  df-atl 36494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator