| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atncvrN | Structured version Visualization version GIF version | ||
| Description: Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atncvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| atncvr.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atncvrN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 2 | atncvr.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atn0 39417 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
| 5 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | 5, 2 | atbase 39398 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 7 | eqid 2731 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | atncvr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 9 | 5, 7, 1, 8, 2 | atcvreq0 39423 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
| 10 | 6, 9 | syl3an2 1164 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
| 11 | 10 | necon3bbid 2965 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃𝐶𝑄 ↔ 𝑃 ≠ (0.‘𝐾))) |
| 12 | 4, 11 | mpbird 257 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 0.cp0 18327 ⋖ ccvr 39371 Atomscatm 39372 AtLatcal 39373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-proset 18200 df-poset 18219 df-plt 18234 df-glb 18251 df-p0 18329 df-lat 18338 df-covers 39375 df-ats 39376 df-atl 39407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |