| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atncvrN | Structured version Visualization version GIF version | ||
| Description: Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atncvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| atncvr.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atncvrN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 2 | atncvr.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atn0 39296 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
| 5 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | 5, 2 | atbase 39277 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 7 | eqid 2730 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | atncvr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 9 | 5, 7, 1, 8, 2 | atcvreq0 39302 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
| 10 | 6, 9 | syl3an2 1164 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
| 11 | 10 | necon3bbid 2963 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃𝐶𝑄 ↔ 𝑃 ≠ (0.‘𝐾))) |
| 12 | 4, 11 | mpbird 257 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 ‘cfv 6513 Basecbs 17185 lecple 17233 0.cp0 18388 ⋖ ccvr 39250 Atomscatm 39251 AtLatcal 39252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-proset 18261 df-poset 18280 df-plt 18295 df-glb 18312 df-p0 18390 df-lat 18397 df-covers 39254 df-ats 39255 df-atl 39286 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |