![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirval2lem | Structured version Visualization version GIF version |
Description: Lemma for bj-imdirval2 36554 and bj-iminvval2 36565. (Contributed by BJ, 23-May-2024.) |
Ref | Expression |
---|---|
bj-imdirval2lem.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-imdirval2lem.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
bj-imdirval2lem | ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirval2lem.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | 1 | pwexd 5367 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
3 | bj-imdirval2lem.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | 3 | pwexd 5367 | . . 3 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
5 | simprl 768 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑥 ⊆ 𝐴) | |
6 | velpw 4599 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
7 | 5, 6 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑥 ∈ 𝒫 𝐴) |
8 | simprr 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑦 ⊆ 𝐵) | |
9 | velpw 4599 | . . . 4 ⊢ (𝑦 ∈ 𝒫 𝐵 ↔ 𝑦 ⊆ 𝐵) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑦 ∈ 𝒫 𝐵) |
11 | 2, 4, 7, 10 | opabex2 8036 | . 2 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)} ∈ V) |
12 | simpl 482 | . . . 4 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓) → (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) | |
13 | 12 | ssopab2i 5540 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)} |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)}) |
15 | 11, 14 | ssexd 5314 | 1 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 𝒫 cpw 4594 {copab 5200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-opab 5201 df-xp 5672 df-rel 5673 |
This theorem is referenced by: bj-imdirval2 36554 bj-iminvval2 36565 |
Copyright terms: Public domain | W3C validator |