Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirval2lem Structured version   Visualization version   GIF version

Theorem bj-imdirval2lem 37177
Description: Lemma for bj-imdirval2 37178 and bj-iminvval2 37189. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-imdirval2lem.exa (𝜑𝐴𝑈)
bj-imdirval2lem.exb (𝜑𝐵𝑉)
Assertion
Ref Expression
bj-imdirval2lem (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem bj-imdirval2lem
StepHypRef Expression
1 bj-imdirval2lem.exa . . . 4 (𝜑𝐴𝑈)
21pwexd 5337 . . 3 (𝜑 → 𝒫 𝐴 ∈ V)
3 bj-imdirval2lem.exb . . . 4 (𝜑𝐵𝑉)
43pwexd 5337 . . 3 (𝜑 → 𝒫 𝐵 ∈ V)
5 simprl 770 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥𝐴)
6 velpw 4571 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
75, 6sylibr 234 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ 𝒫 𝐴)
8 simprr 772 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝐵)
9 velpw 4571 . . . 4 (𝑦 ∈ 𝒫 𝐵𝑦𝐵)
108, 9sylibr 234 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 ∈ 𝒫 𝐵)
112, 4, 7, 10opabex2 8039 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∈ V)
12 simpl 482 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝜓) → (𝑥𝐴𝑦𝐵))
1312ssopab2i 5513 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
1413a1i 11 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)})
1511, 14ssexd 5282 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566  {copab 5172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by:  bj-imdirval2  37178  bj-iminvval2  37189
  Copyright terms: Public domain W3C validator