Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirval2lem Structured version   Visualization version   GIF version

Theorem bj-imdirval2lem 36553
Description: Lemma for bj-imdirval2 36554 and bj-iminvval2 36565. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-imdirval2lem.exa (𝜑𝐴𝑈)
bj-imdirval2lem.exb (𝜑𝐵𝑉)
Assertion
Ref Expression
bj-imdirval2lem (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem bj-imdirval2lem
StepHypRef Expression
1 bj-imdirval2lem.exa . . . 4 (𝜑𝐴𝑈)
21pwexd 5367 . . 3 (𝜑 → 𝒫 𝐴 ∈ V)
3 bj-imdirval2lem.exb . . . 4 (𝜑𝐵𝑉)
43pwexd 5367 . . 3 (𝜑 → 𝒫 𝐵 ∈ V)
5 simprl 768 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥𝐴)
6 velpw 4599 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
75, 6sylibr 233 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ 𝒫 𝐴)
8 simprr 770 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝐵)
9 velpw 4599 . . . 4 (𝑦 ∈ 𝒫 𝐵𝑦𝐵)
108, 9sylibr 233 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 ∈ 𝒫 𝐵)
112, 4, 7, 10opabex2 8036 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∈ V)
12 simpl 482 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝜓) → (𝑥𝐴𝑦𝐵))
1312ssopab2i 5540 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
1413a1i 11 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)})
1511, 14ssexd 5314 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  Vcvv 3466  wss 3940  𝒫 cpw 4594  {copab 5200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-opab 5201  df-xp 5672  df-rel 5673
This theorem is referenced by:  bj-imdirval2  36554  bj-iminvval2  36565
  Copyright terms: Public domain W3C validator