Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirval2lem Structured version   Visualization version   GIF version

Theorem bj-imdirval2lem 35353
Description: Lemma for bj-imdirval2 35354 and bj-iminvval2 35365. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-imdirval2lem.exa (𝜑𝐴𝑈)
bj-imdirval2lem.exb (𝜑𝐵𝑉)
Assertion
Ref Expression
bj-imdirval2lem (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem bj-imdirval2lem
StepHypRef Expression
1 bj-imdirval2lem.exa . . . 4 (𝜑𝐴𝑈)
21pwexd 5302 . . 3 (𝜑 → 𝒫 𝐴 ∈ V)
3 bj-imdirval2lem.exb . . . 4 (𝜑𝐵𝑉)
43pwexd 5302 . . 3 (𝜑 → 𝒫 𝐵 ∈ V)
5 simprl 768 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥𝐴)
6 velpw 4538 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
75, 6sylibr 233 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ 𝒫 𝐴)
8 simprr 770 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝐵)
9 velpw 4538 . . . 4 (𝑦 ∈ 𝒫 𝐵𝑦𝐵)
108, 9sylibr 233 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 ∈ 𝒫 𝐵)
112, 4, 7, 10opabex2 7897 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∈ V)
12 simpl 483 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝜓) → (𝑥𝐴𝑦𝐵))
1312ssopab2i 5463 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
1413a1i 11 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)})
1511, 14ssexd 5248 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3432  wss 3887  𝒫 cpw 4533  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-opab 5137  df-xp 5595  df-rel 5596
This theorem is referenced by:  bj-imdirval2  35354  bj-iminvval2  35365
  Copyright terms: Public domain W3C validator