![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirval2lem | Structured version Visualization version GIF version |
Description: Lemma for bj-imdirval2 37149 and bj-iminvval2 37160. (Contributed by BJ, 23-May-2024.) |
Ref | Expression |
---|---|
bj-imdirval2lem.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-imdirval2lem.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
bj-imdirval2lem | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirval2lem.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | 1 | pwexd 5397 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
3 | bj-imdirval2lem.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | 3 | pwexd 5397 | . . 3 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
5 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑥 ⊆ 𝐴) | |
6 | velpw 4627 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
7 | 5, 6 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑥 ∈ 𝒫 𝐴) |
8 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑦 ⊆ 𝐵) | |
9 | velpw 4627 | . . . 4 ⊢ (𝑦 ∈ 𝒫 𝐵 ↔ 𝑦 ⊆ 𝐵) | |
10 | 8, 9 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑦 ∈ 𝒫 𝐵) |
11 | 2, 4, 7, 10 | opabex2 8098 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)} ∈ V) |
12 | simpl 482 | . . . 4 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓) → (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) | |
13 | 12 | ssopab2i 5569 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)} |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)}) |
15 | 11, 14 | ssexd 5342 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: bj-imdirval2 37149 bj-iminvval2 37160 |
Copyright terms: Public domain | W3C validator |