Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirval2lem | Structured version Visualization version GIF version |
Description: Lemma for bj-imdirval2 35467 and bj-iminvval2 35478. (Contributed by BJ, 23-May-2024.) |
Ref | Expression |
---|---|
bj-imdirval2lem.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-imdirval2lem.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
bj-imdirval2lem | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirval2lem.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | 1 | pwexd 5322 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
3 | bj-imdirval2lem.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | 3 | pwexd 5322 | . . 3 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
5 | simprl 768 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑥 ⊆ 𝐴) | |
6 | velpw 4552 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
7 | 5, 6 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑥 ∈ 𝒫 𝐴) |
8 | simprr 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑦 ⊆ 𝐵) | |
9 | velpw 4552 | . . . 4 ⊢ (𝑦 ∈ 𝒫 𝐵 ↔ 𝑦 ⊆ 𝐵) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) → 𝑦 ∈ 𝒫 𝐵) |
11 | 2, 4, 7, 10 | opabex2 7965 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)} ∈ V) |
12 | simpl 483 | . . . 4 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓) → (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)) | |
13 | 12 | ssopab2i 5494 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)} |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵)}) |
15 | 11, 14 | ssexd 5268 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3898 𝒫 cpw 4547 {copab 5154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-opab 5155 df-xp 5626 df-rel 5627 |
This theorem is referenced by: bj-imdirval2 35467 bj-iminvval2 35478 |
Copyright terms: Public domain | W3C validator |