| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirval2 | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-imdirval2.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| bj-imdirval2.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| bj-imdirval2.arg | ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
| Ref | Expression |
|---|---|
| bj-imdirval2 | ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-imdirval2.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 2 | bj-imdirval2.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | 1, 2 | bj-imdirval 37157 | . 2 ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)})) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
| 5 | 4 | imaeq1d 6014 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (𝑟 “ 𝑥) = (𝑅 “ 𝑥)) |
| 6 | 5 | eqeq1d 2731 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ((𝑟 “ 𝑥) = 𝑦 ↔ (𝑅 “ 𝑥) = 𝑦)) |
| 7 | 6 | anbi2d 630 | . . 3 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦))) |
| 8 | 7 | opabbidv 5161 | . 2 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
| 9 | 1, 2 | xpexd 7691 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 10 | bj-imdirval2.arg | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) | |
| 11 | 9, 10 | sselpwd 5270 | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
| 12 | 1, 2 | bj-imdirval2lem 37158 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)} ∈ V) |
| 13 | 3, 8, 11, 12 | fvmptd 6941 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 {copab 5157 × cxp 5621 “ cima 5626 ‘cfv 6486 (class class class)co 7353 𝒫*cimdir 37154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-imdir 37155 |
| This theorem is referenced by: bj-imdirval3 37160 bj-imdirid 37162 bj-imdirco 37166 |
| Copyright terms: Public domain | W3C validator |