![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirval2 | Structured version Visualization version GIF version |
Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
Ref | Expression |
---|---|
bj-imdirval2.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-imdirval2.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-imdirval2.arg | ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
Ref | Expression |
---|---|
bj-imdirval2 | ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirval2.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | bj-imdirval2.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | 1, 2 | bj-imdirval 36552 | . 2 ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)})) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
5 | 4 | imaeq1d 6048 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (𝑟 “ 𝑥) = (𝑅 “ 𝑥)) |
6 | 5 | eqeq1d 2726 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ((𝑟 “ 𝑥) = 𝑦 ↔ (𝑅 “ 𝑥) = 𝑦)) |
7 | 6 | anbi2d 628 | . . 3 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦))) |
8 | 7 | opabbidv 5204 | . 2 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
9 | 1, 2 | xpexd 7731 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
10 | bj-imdirval2.arg | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) | |
11 | 9, 10 | sselpwd 5316 | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
12 | 1, 2 | bj-imdirval2lem 36553 | . 2 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)} ∈ V) |
13 | 3, 8, 11, 12 | fvmptd 6995 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 𝒫 cpw 4594 {copab 5200 × cxp 5664 “ cima 5669 ‘cfv 6533 (class class class)co 7401 𝒫*cimdir 36549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-imdir 36550 |
This theorem is referenced by: bj-imdirval3 36555 bj-imdirid 36557 bj-imdirco 36561 |
Copyright terms: Public domain | W3C validator |