![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirval2 | Structured version Visualization version GIF version |
Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
Ref | Expression |
---|---|
bj-imdirval2.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-imdirval2.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-imdirval2.arg | ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
Ref | Expression |
---|---|
bj-imdirval2 | ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirval2.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | bj-imdirval2.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | 1, 2 | bj-imdirval 36583 | . 2 ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)})) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
5 | 4 | imaeq1d 6056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (𝑟 “ 𝑥) = (𝑅 “ 𝑥)) |
6 | 5 | eqeq1d 2729 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ((𝑟 “ 𝑥) = 𝑦 ↔ (𝑅 “ 𝑥) = 𝑦)) |
7 | 6 | anbi2d 628 | . . 3 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦))) |
8 | 7 | opabbidv 5208 | . 2 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
9 | 1, 2 | xpexd 7745 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
10 | bj-imdirval2.arg | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) | |
11 | 9, 10 | sselpwd 5322 | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
12 | 1, 2 | bj-imdirval2lem 36584 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)} ∈ V) |
13 | 3, 8, 11, 12 | fvmptd 7006 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ⊆ wss 3944 𝒫 cpw 4598 {copab 5204 × cxp 5670 “ cima 5675 ‘cfv 6542 (class class class)co 7414 𝒫*cimdir 36580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-imdir 36581 |
This theorem is referenced by: bj-imdirval3 36586 bj-imdirid 36588 bj-imdirco 36592 |
Copyright terms: Public domain | W3C validator |