![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirval2 | Structured version Visualization version GIF version |
Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
Ref | Expression |
---|---|
bj-imdirval2.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-imdirval2.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-imdirval2.arg | ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
Ref | Expression |
---|---|
bj-imdirval2 | ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirval2.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | bj-imdirval2.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | 1, 2 | bj-imdirval 37147 | . 2 ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)})) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
5 | 4 | imaeq1d 6088 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (𝑟 “ 𝑥) = (𝑅 “ 𝑥)) |
6 | 5 | eqeq1d 2742 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ((𝑟 “ 𝑥) = 𝑦 ↔ (𝑅 “ 𝑥) = 𝑦)) |
7 | 6 | anbi2d 629 | . . 3 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦))) |
8 | 7 | opabbidv 5232 | . 2 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
9 | 1, 2 | xpexd 7786 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
10 | bj-imdirval2.arg | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) | |
11 | 9, 10 | sselpwd 5346 | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
12 | 1, 2 | bj-imdirval2lem 37148 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)} ∈ V) |
13 | 3, 8, 11, 12 | fvmptd 7036 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 {copab 5228 × cxp 5698 “ cima 5703 ‘cfv 6573 (class class class)co 7448 𝒫*cimdir 37144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-imdir 37145 |
This theorem is referenced by: bj-imdirval3 37150 bj-imdirid 37152 bj-imdirco 37156 |
Copyright terms: Public domain | W3C validator |