Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirval2 Structured version   Visualization version   GIF version

Theorem bj-imdirval2 37184
Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.)
Hypotheses
Ref Expression
bj-imdirval2.exa (𝜑𝐴𝑈)
bj-imdirval2.exb (𝜑𝐵𝑉)
bj-imdirval2.arg (𝜑𝑅 ⊆ (𝐴 × 𝐵))
Assertion
Ref Expression
bj-imdirval2 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem bj-imdirval2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 bj-imdirval2.exa . . 3 (𝜑𝐴𝑈)
2 bj-imdirval2.exb . . 3 (𝜑𝐵𝑉)
31, 2bj-imdirval 37182 . 2 (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑟𝑥) = 𝑦)}))
4 simpr 484 . . . . . 6 ((𝜑𝑟 = 𝑅) → 𝑟 = 𝑅)
54imaeq1d 6077 . . . . 5 ((𝜑𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
65eqeq1d 2739 . . . 4 ((𝜑𝑟 = 𝑅) → ((𝑟𝑥) = 𝑦 ↔ (𝑅𝑥) = 𝑦))
76anbi2d 630 . . 3 ((𝜑𝑟 = 𝑅) → (((𝑥𝐴𝑦𝐵) ∧ (𝑟𝑥) = 𝑦) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)))
87opabbidv 5209 . 2 ((𝜑𝑟 = 𝑅) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑟𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
91, 2xpexd 7771 . . 3 (𝜑 → (𝐴 × 𝐵) ∈ V)
10 bj-imdirval2.arg . . 3 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
119, 10sselpwd 5328 . 2 (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
121, 2bj-imdirval2lem 37183 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)} ∈ V)
133, 8, 11, 12fvmptd 7023 1 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  𝒫 cpw 4600  {copab 5205   × cxp 5683  cima 5688  cfv 6561  (class class class)co 7431  𝒫*cimdir 37179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-imdir 37180
This theorem is referenced by:  bj-imdirval3  37185  bj-imdirid  37187  bj-imdirco  37191
  Copyright terms: Public domain W3C validator