Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirval2 Structured version   Visualization version   GIF version

Theorem bj-imdirval2 37171
Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.)
Hypotheses
Ref Expression
bj-imdirval2.exa (𝜑𝐴𝑈)
bj-imdirval2.exb (𝜑𝐵𝑉)
bj-imdirval2.arg (𝜑𝑅 ⊆ (𝐴 × 𝐵))
Assertion
Ref Expression
bj-imdirval2 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem bj-imdirval2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 bj-imdirval2.exa . . 3 (𝜑𝐴𝑈)
2 bj-imdirval2.exb . . 3 (𝜑𝐵𝑉)
31, 2bj-imdirval 37169 . 2 (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑟𝑥) = 𝑦)}))
4 simpr 484 . . . . . 6 ((𝜑𝑟 = 𝑅) → 𝑟 = 𝑅)
54imaeq1d 6030 . . . . 5 ((𝜑𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
65eqeq1d 2731 . . . 4 ((𝜑𝑟 = 𝑅) → ((𝑟𝑥) = 𝑦 ↔ (𝑅𝑥) = 𝑦))
76anbi2d 630 . . 3 ((𝜑𝑟 = 𝑅) → (((𝑥𝐴𝑦𝐵) ∧ (𝑟𝑥) = 𝑦) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)))
87opabbidv 5173 . 2 ((𝜑𝑟 = 𝑅) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑟𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
91, 2xpexd 7727 . . 3 (𝜑 → (𝐴 × 𝐵) ∈ V)
10 bj-imdirval2.arg . . 3 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
119, 10sselpwd 5283 . 2 (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
121, 2bj-imdirval2lem 37170 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)} ∈ V)
133, 8, 11, 12fvmptd 6975 1 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  𝒫 cpw 4563  {copab 5169   × cxp 5636  cima 5641  cfv 6511  (class class class)co 7387  𝒫*cimdir 37166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-imdir 37167
This theorem is referenced by:  bj-imdirval3  37172  bj-imdirid  37174  bj-imdirco  37178
  Copyright terms: Public domain W3C validator