| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-iminvval2 | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.) |
| Ref | Expression |
|---|---|
| bj-iminvval2.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| bj-iminvval2.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| bj-iminvval2.arg | ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
| Ref | Expression |
|---|---|
| bj-iminvval2 | ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-iminvval2.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 2 | bj-iminvval2.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | 1, 2 | bj-iminvval 37181 | . 2 ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
| 5 | 4 | cnveqd 5839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ◡𝑟 = ◡𝑅) |
| 6 | 5 | imaeq1d 6030 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (◡𝑟 “ 𝑦) = (◡𝑅 “ 𝑦)) |
| 7 | 6 | eqeq2d 2740 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (𝑥 = (◡𝑟 “ 𝑦) ↔ 𝑥 = (◡𝑅 “ 𝑦))) |
| 8 | 7 | anbi2d 630 | . . 3 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦)) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦)))) |
| 9 | 8 | opabbidv 5173 | . 2 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))}) |
| 10 | 1, 2 | xpexd 7727 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 11 | bj-iminvval2.arg | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) | |
| 12 | 10, 11 | sselpwd 5283 | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
| 13 | 1, 2 | bj-imdirval2lem 37170 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))} ∈ V) |
| 14 | 3, 9, 12, 13 | fvmptd 6975 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 {copab 5169 × cxp 5636 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 𝒫*ciminv 37179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-iminv 37180 |
| This theorem is referenced by: bj-iminvid 37183 |
| Copyright terms: Public domain | W3C validator |