Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-iminvval2 Structured version   Visualization version   GIF version

Theorem bj-iminvval2 37178
Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-iminvval2.exa (𝜑𝐴𝑈)
bj-iminvval2.exb (𝜑𝐵𝑉)
bj-iminvval2.arg (𝜑𝑅 ⊆ (𝐴 × 𝐵))
Assertion
Ref Expression
bj-iminvval2 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem bj-iminvval2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 bj-iminvval2.exa . . 3 (𝜑𝐴𝑈)
2 bj-iminvval2.exb . . 3 (𝜑𝐵𝑉)
31, 2bj-iminvval 37177 . 2 (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))}))
4 simpr 484 . . . . . . 7 ((𝜑𝑟 = 𝑅) → 𝑟 = 𝑅)
54cnveqd 5818 . . . . . 6 ((𝜑𝑟 = 𝑅) → 𝑟 = 𝑅)
65imaeq1d 6010 . . . . 5 ((𝜑𝑟 = 𝑅) → (𝑟𝑦) = (𝑅𝑦))
76eqeq2d 2740 . . . 4 ((𝜑𝑟 = 𝑅) → (𝑥 = (𝑟𝑦) ↔ 𝑥 = (𝑅𝑦)))
87anbi2d 630 . . 3 ((𝜑𝑟 = 𝑅) → (((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦)) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))))
98opabbidv 5158 . 2 ((𝜑𝑟 = 𝑅) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))})
101, 2xpexd 7687 . . 3 (𝜑 → (𝐴 × 𝐵) ∈ V)
11 bj-iminvval2.arg . . 3 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
1210, 11sselpwd 5267 . 2 (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
131, 2bj-imdirval2lem 37166 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))} ∈ V)
143, 9, 12, 13fvmptd 6937 1 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  𝒫 cpw 4551  {copab 5154   × cxp 5617  ccnv 5618  cima 5622  cfv 6482  (class class class)co 7349  𝒫*ciminv 37175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-iminv 37176
This theorem is referenced by:  bj-iminvid  37179
  Copyright terms: Public domain W3C validator