Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-iminvval2 Structured version   Visualization version   GIF version

Theorem bj-iminvval2 37177
Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-iminvval2.exa (𝜑𝐴𝑈)
bj-iminvval2.exb (𝜑𝐵𝑉)
bj-iminvval2.arg (𝜑𝑅 ⊆ (𝐴 × 𝐵))
Assertion
Ref Expression
bj-iminvval2 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem bj-iminvval2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 bj-iminvval2.exa . . 3 (𝜑𝐴𝑈)
2 bj-iminvval2.exb . . 3 (𝜑𝐵𝑉)
31, 2bj-iminvval 37176 . 2 (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))}))
4 simpr 484 . . . . . . 7 ((𝜑𝑟 = 𝑅) → 𝑟 = 𝑅)
54cnveqd 5889 . . . . . 6 ((𝜑𝑟 = 𝑅) → 𝑟 = 𝑅)
65imaeq1d 6079 . . . . 5 ((𝜑𝑟 = 𝑅) → (𝑟𝑦) = (𝑅𝑦))
76eqeq2d 2746 . . . 4 ((𝜑𝑟 = 𝑅) → (𝑥 = (𝑟𝑦) ↔ 𝑥 = (𝑅𝑦)))
87anbi2d 630 . . 3 ((𝜑𝑟 = 𝑅) → (((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦)) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))))
98opabbidv 5214 . 2 ((𝜑𝑟 = 𝑅) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))})
101, 2xpexd 7770 . . 3 (𝜑 → (𝐴 × 𝐵) ∈ V)
11 bj-iminvval2.arg . . 3 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
1210, 11sselpwd 5334 . 2 (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
131, 2bj-imdirval2lem 37165 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))} ∈ V)
143, 9, 12, 13fvmptd 7023 1 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605  {copab 5210   × cxp 5687  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431  𝒫*ciminv 37174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-iminv 37175
This theorem is referenced by:  bj-iminvid  37178
  Copyright terms: Public domain W3C validator