Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-iminvval2 Structured version   Visualization version   GIF version

Theorem bj-iminvval2 35292
Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-iminvval2.exa (𝜑𝐴𝑈)
bj-iminvval2.exb (𝜑𝐵𝑉)
bj-iminvval2.arg (𝜑𝑅 ⊆ (𝐴 × 𝐵))
Assertion
Ref Expression
bj-iminvval2 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem bj-iminvval2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 bj-iminvval2.exa . . 3 (𝜑𝐴𝑈)
2 bj-iminvval2.exb . . 3 (𝜑𝐵𝑉)
31, 2bj-iminvval 35291 . 2 (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))}))
4 simpr 484 . . . . . . 7 ((𝜑𝑟 = 𝑅) → 𝑟 = 𝑅)
54cnveqd 5773 . . . . . 6 ((𝜑𝑟 = 𝑅) → 𝑟 = 𝑅)
65imaeq1d 5957 . . . . 5 ((𝜑𝑟 = 𝑅) → (𝑟𝑦) = (𝑅𝑦))
76eqeq2d 2749 . . . 4 ((𝜑𝑟 = 𝑅) → (𝑥 = (𝑟𝑦) ↔ 𝑥 = (𝑅𝑦)))
87anbi2d 628 . . 3 ((𝜑𝑟 = 𝑅) → (((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦)) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))))
98opabbidv 5136 . 2 ((𝜑𝑟 = 𝑅) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))})
101, 2xpexd 7579 . . 3 (𝜑 → (𝐴 × 𝐵) ∈ V)
11 bj-iminvval2.arg . . 3 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
1210, 11sselpwd 5245 . 2 (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
131, 2bj-imdirval2lem 35280 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))} ∈ V)
143, 9, 12, 13fvmptd 6864 1 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑅𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  𝒫 cpw 4530  {copab 5132   × cxp 5578  ccnv 5579  cima 5583  cfv 6418  (class class class)co 7255  𝒫*ciminv 35289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-iminv 35290
This theorem is referenced by:  bj-iminvid  35293
  Copyright terms: Public domain W3C validator