![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-iminvval2 | Structured version Visualization version GIF version |
Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.) |
Ref | Expression |
---|---|
bj-iminvval2.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-iminvval2.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-iminvval2.arg | ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
Ref | Expression |
---|---|
bj-iminvval2 | ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-iminvval2.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | bj-iminvval2.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | 1, 2 | bj-iminvval 37176 | . 2 ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
5 | 4 | cnveqd 5889 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ◡𝑟 = ◡𝑅) |
6 | 5 | imaeq1d 6079 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (◡𝑟 “ 𝑦) = (◡𝑅 “ 𝑦)) |
7 | 6 | eqeq2d 2746 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (𝑥 = (◡𝑟 “ 𝑦) ↔ 𝑥 = (◡𝑅 “ 𝑦))) |
8 | 7 | anbi2d 630 | . . 3 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦)) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦)))) |
9 | 8 | opabbidv 5214 | . 2 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))}) |
10 | 1, 2 | xpexd 7770 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
11 | bj-iminvval2.arg | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) | |
12 | 10, 11 | sselpwd 5334 | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
13 | 1, 2 | bj-imdirval2lem 37165 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))} ∈ V) |
14 | 3, 9, 12, 13 | fvmptd 7023 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 {copab 5210 × cxp 5687 ◡ccnv 5688 “ cima 5692 ‘cfv 6563 (class class class)co 7431 𝒫*ciminv 37174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-iminv 37175 |
This theorem is referenced by: bj-iminvid 37178 |
Copyright terms: Public domain | W3C validator |