| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpima1sn | Structured version Visualization version GIF version | ||
| Description: The image of a singleton by a direct product, empty case. [Change and relabel xpimasn 6161 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-xpima1sn | ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-xpimasn 36950 | . 2 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | |
| 2 | iffalse 4500 | . 2 ⊢ (¬ 𝑋 ∈ 𝐴 → if(𝑋 ∈ 𝐴, 𝐵, ∅) = ∅) | |
| 3 | 1, 2 | eqtrid 2777 | 1 ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4299 ifcif 4491 {csn 4592 × cxp 5639 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: bj-projval 36991 |
| Copyright terms: Public domain | W3C validator |