| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpima1sn | Structured version Visualization version GIF version | ||
| Description: The image of a singleton by a direct product, empty case. [Change and relabel xpimasn 6174 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-xpima1sn | ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-xpimasn 36973 | . 2 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | |
| 2 | iffalse 4509 | . 2 ⊢ (¬ 𝑋 ∈ 𝐴 → if(𝑋 ∈ 𝐴, 𝐵, ∅) = ∅) | |
| 3 | 1, 2 | eqtrid 2782 | 1 ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ∅c0 4308 ifcif 4500 {csn 4601 × cxp 5652 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: bj-projval 37014 |
| Copyright terms: Public domain | W3C validator |