| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpima1snALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of bj-xpima1sn 36969. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-xpima1snALT | ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn 4662 | . 2 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
| 2 | xpima1 6127 | . 2 ⊢ ((𝐴 ∩ {𝑋}) = ∅ → ((𝐴 × 𝐵) “ {𝑋}) = ∅) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2110 ∩ cin 3899 ∅c0 4281 {csn 4574 × cxp 5612 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |