Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpima1snALT Structured version   Visualization version   GIF version

Theorem bj-xpima1snALT 36945
Description: Alternate proof of bj-xpima1sn 36944. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-xpima1snALT 𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)

Proof of Theorem bj-xpima1snALT
StepHypRef Expression
1 disjsn 4675 . 2 ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐴)
2 xpima1 6156 . 2 ((𝐴 ∩ {𝑋}) = ∅ → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
31, 2sylbir 235 1 𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cin 3913  c0 4296  {csn 4589   × cxp 5636  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator