![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpima1snALT | Structured version Visualization version GIF version |
Description: Alternate proof of bj-xpima1sn 33801. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-xpima1snALT | ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn 4517 | . 2 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
2 | xpima1 5877 | . 2 ⊢ ((𝐴 ∩ {𝑋}) = ∅ → ((𝐴 × 𝐵) “ {𝑋}) = ∅) | |
3 | 1, 2 | sylbir 227 | 1 ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1508 ∈ wcel 2051 ∩ cin 3821 ∅c0 4172 {csn 4435 × cxp 5401 “ cima 5406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-xp 5409 df-rel 5410 df-cnv 5411 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |