Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1015 Structured version   Visualization version   GIF version

Theorem bnj1015 32132
Description: Technical lemma for bnj69 32179. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1015.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1015.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1015.13 𝐷 = (ω ∖ {∅})
bnj1015.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1015.15 𝐺𝑉
bnj1015.16 𝐽𝑉
Assertion
Ref Expression
bnj1015 ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦,𝑓,𝑛)   𝐺(𝑦,𝑓,𝑖,𝑛)   𝐽(𝑦,𝑓,𝑖,𝑛)   𝑉(𝑦,𝑓,𝑖,𝑛)

Proof of Theorem bnj1015
Dummy variables 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1015.16 . . 3 𝐽𝑉
21elexi 3511 . 2 𝐽 ∈ V
3 eleq1 2897 . . . 4 (𝑗 = 𝐽 → (𝑗 ∈ dom 𝐺𝐽 ∈ dom 𝐺))
43anbi2d 628 . . 3 (𝑗 = 𝐽 → ((𝐺𝐵𝑗 ∈ dom 𝐺) ↔ (𝐺𝐵𝐽 ∈ dom 𝐺)))
5 fveq2 6663 . . . 4 (𝑗 = 𝐽 → (𝐺𝑗) = (𝐺𝐽))
65sseq1d 3995 . . 3 (𝑗 = 𝐽 → ((𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅)))
74, 6imbi12d 346 . 2 (𝑗 = 𝐽 → (((𝐺𝐵𝑗 ∈ dom 𝐺) → (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))))
8 bnj1015.15 . . . 4 𝐺𝑉
98elexi 3511 . . 3 𝐺 ∈ V
10 eleq1 2897 . . . . 5 (𝑔 = 𝐺 → (𝑔𝐵𝐺𝐵))
11 dmeq 5765 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
1211eleq2d 2895 . . . . 5 (𝑔 = 𝐺 → (𝑗 ∈ dom 𝑔𝑗 ∈ dom 𝐺))
1310, 12anbi12d 630 . . . 4 (𝑔 = 𝐺 → ((𝑔𝐵𝑗 ∈ dom 𝑔) ↔ (𝐺𝐵𝑗 ∈ dom 𝐺)))
14 fveq1 6662 . . . . 5 (𝑔 = 𝐺 → (𝑔𝑗) = (𝐺𝑗))
1514sseq1d 3995 . . . 4 (𝑔 = 𝐺 → ((𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)))
1613, 15imbi12d 346 . . 3 (𝑔 = 𝐺 → (((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝐺𝐵𝑗 ∈ dom 𝐺) → (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))))
17 bnj1015.1 . . . 4 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
18 bnj1015.2 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
19 bnj1015.13 . . . 4 𝐷 = (ω ∖ {∅})
20 bnj1015.14 . . . 4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
2117, 18, 19, 20bnj1014 32131 . . 3 ((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
229, 16, 21vtocl 3557 . 2 ((𝐺𝐵𝑗 ∈ dom 𝐺) → (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
232, 7, 22vtocl 3557 1 ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  {cab 2796  wral 3135  wrex 3136  cdif 3930  wss 3933  c0 4288  {csn 4557   ciun 4910  dom cdm 5548  suc csuc 6186   Fn wfn 6343  cfv 6348  ωcom 7569   predc-bnj14 31857   trClc-bnj18 31863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-dm 5558  df-iota 6307  df-fv 6356  df-bnj18 31864
This theorem is referenced by:  bnj1018  32133
  Copyright terms: Public domain W3C validator