Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1015 Structured version   Visualization version   GIF version

Theorem bnj1015 34939
Description: Technical lemma for bnj69 34987. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1015.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1015.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1015.13 𝐷 = (ω ∖ {∅})
bnj1015.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1015.15 𝐺𝑉
bnj1015.16 𝐽𝑉
Assertion
Ref Expression
bnj1015 ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦,𝑓,𝑛)   𝐺(𝑦,𝑓,𝑖,𝑛)   𝐽(𝑦,𝑓,𝑖,𝑛)   𝑉(𝑦,𝑓,𝑖,𝑛)

Proof of Theorem bnj1015
Dummy variables 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1015.16 . . 3 𝐽𝑉
21elexi 3482 . 2 𝐽 ∈ V
3 eleq1 2822 . . . 4 (𝑗 = 𝐽 → (𝑗 ∈ dom 𝐺𝐽 ∈ dom 𝐺))
43anbi2d 630 . . 3 (𝑗 = 𝐽 → ((𝐺𝐵𝑗 ∈ dom 𝐺) ↔ (𝐺𝐵𝐽 ∈ dom 𝐺)))
5 fveq2 6875 . . . 4 (𝑗 = 𝐽 → (𝐺𝑗) = (𝐺𝐽))
65sseq1d 3990 . . 3 (𝑗 = 𝐽 → ((𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅)))
74, 6imbi12d 344 . 2 (𝑗 = 𝐽 → (((𝐺𝐵𝑗 ∈ dom 𝐺) → (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))))
8 bnj1015.15 . . . 4 𝐺𝑉
98elexi 3482 . . 3 𝐺 ∈ V
10 eleq1 2822 . . . . 5 (𝑔 = 𝐺 → (𝑔𝐵𝐺𝐵))
11 dmeq 5883 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
1211eleq2d 2820 . . . . 5 (𝑔 = 𝐺 → (𝑗 ∈ dom 𝑔𝑗 ∈ dom 𝐺))
1310, 12anbi12d 632 . . . 4 (𝑔 = 𝐺 → ((𝑔𝐵𝑗 ∈ dom 𝑔) ↔ (𝐺𝐵𝑗 ∈ dom 𝐺)))
14 fveq1 6874 . . . . 5 (𝑔 = 𝐺 → (𝑔𝑗) = (𝐺𝑗))
1514sseq1d 3990 . . . 4 (𝑔 = 𝐺 → ((𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)))
1613, 15imbi12d 344 . . 3 (𝑔 = 𝐺 → (((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝐺𝐵𝑗 ∈ dom 𝐺) → (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))))
17 bnj1015.1 . . . 4 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
18 bnj1015.2 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
19 bnj1015.13 . . . 4 𝐷 = (ω ∖ {∅})
20 bnj1015.14 . . . 4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
2117, 18, 19, 20bnj1014 34938 . . 3 ((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
229, 16, 21vtocl 3537 . 2 ((𝐺𝐵𝑗 ∈ dom 𝐺) → (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
232, 7, 22vtocl 3537 1 ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  cdif 3923  wss 3926  c0 4308  {csn 4601   ciun 4967  dom cdm 5654  suc csuc 6354   Fn wfn 6525  cfv 6530  ωcom 7859   predc-bnj14 34665   trClc-bnj18 34671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-dm 5664  df-iota 6483  df-fv 6538  df-bnj18 34672
This theorem is referenced by:  bnj1018g  34940  bnj1018  34941
  Copyright terms: Public domain W3C validator