| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1015 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 34987. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1015.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj1015.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj1015.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj1015.14 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| bnj1015.15 | ⊢ 𝐺 ∈ 𝑉 |
| bnj1015.16 | ⊢ 𝐽 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| bnj1015 | ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐽 ∈ dom 𝐺) → (𝐺‘𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1015.16 | . . 3 ⊢ 𝐽 ∈ 𝑉 | |
| 2 | 1 | elexi 3482 | . 2 ⊢ 𝐽 ∈ V |
| 3 | eleq1 2822 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑗 ∈ dom 𝐺 ↔ 𝐽 ∈ dom 𝐺)) | |
| 4 | 3 | anbi2d 630 | . . 3 ⊢ (𝑗 = 𝐽 → ((𝐺 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝐺) ↔ (𝐺 ∈ 𝐵 ∧ 𝐽 ∈ dom 𝐺))) |
| 5 | fveq2 6875 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝐺‘𝑗) = (𝐺‘𝐽)) | |
| 6 | 5 | sseq1d 3990 | . . 3 ⊢ (𝑗 = 𝐽 → ((𝐺‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝐺‘𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
| 7 | 4, 6 | imbi12d 344 | . 2 ⊢ (𝑗 = 𝐽 → (((𝐺 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝐺) → (𝐺‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝐺 ∈ 𝐵 ∧ 𝐽 ∈ dom 𝐺) → (𝐺‘𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅)))) |
| 8 | bnj1015.15 | . . . 4 ⊢ 𝐺 ∈ 𝑉 | |
| 9 | 8 | elexi 3482 | . . 3 ⊢ 𝐺 ∈ V |
| 10 | eleq1 2822 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ 𝐵 ↔ 𝐺 ∈ 𝐵)) | |
| 11 | dmeq 5883 | . . . . . 6 ⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) | |
| 12 | 11 | eleq2d 2820 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑗 ∈ dom 𝑔 ↔ 𝑗 ∈ dom 𝐺)) |
| 13 | 10, 12 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) ↔ (𝐺 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝐺))) |
| 14 | fveq1 6874 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑗) = (𝐺‘𝑗)) | |
| 15 | 14 | sseq1d 3990 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝐺‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
| 16 | 13, 15 | imbi12d 344 | . . 3 ⊢ (𝑔 = 𝐺 → (((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝐺 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝐺) → (𝐺‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)))) |
| 17 | bnj1015.1 | . . . 4 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 18 | bnj1015.2 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 19 | bnj1015.13 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 20 | bnj1015.14 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
| 21 | 17, 18, 19, 20 | bnj1014 34938 | . . 3 ⊢ ((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 22 | 9, 16, 21 | vtocl 3537 | . 2 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝐺) → (𝐺‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 23 | 2, 7, 22 | vtocl 3537 | 1 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐽 ∈ dom 𝐺) → (𝐺‘𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃wrex 3060 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 {csn 4601 ∪ ciun 4967 dom cdm 5654 suc csuc 6354 Fn wfn 6525 ‘cfv 6530 ωcom 7859 predc-bnj14 34665 trClc-bnj18 34671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-dm 5664 df-iota 6483 df-fv 6538 df-bnj18 34672 |
| This theorem is referenced by: bnj1018g 34940 bnj1018 34941 |
| Copyright terms: Public domain | W3C validator |