Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brelrng Structured version   Visualization version   GIF version

Theorem brelrng 5781
 Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
Assertion
Ref Expression
brelrng ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)

Proof of Theorem brelrng
StepHypRef Expression
1 brcnvg 5718 . . . . 5 ((𝐵𝐺𝐴𝐹) → (𝐵𝐶𝐴𝐴𝐶𝐵))
21ancoms 462 . . . 4 ((𝐴𝐹𝐵𝐺) → (𝐵𝐶𝐴𝐴𝐶𝐵))
32biimp3ar 1467 . . 3 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵𝐶𝐴)
4 breldmg 5748 . . . 4 ((𝐵𝐺𝐴𝐹𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
543com12 1120 . . 3 ((𝐴𝐹𝐵𝐺𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
63, 5syld3an3 1406 . 2 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ dom 𝐶)
7 df-rn 5534 . 2 ran 𝐶 = dom 𝐶
86, 7eleqtrrdi 2901 1 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ w3a 1084   ∈ wcel 2111   class class class wbr 5034  ◡ccnv 5522  dom cdm 5523  ran crn 5524 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3444  df-dif 3886  df-un 3888  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5035  df-opab 5097  df-cnv 5531  df-dm 5533  df-rn 5534 This theorem is referenced by:  brelrn  5782  relelrn  5785  sossfld  6014  fvrn0  6683  pgpfaclem1  19217  perpln2  26549
 Copyright terms: Public domain W3C validator