MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brelrng Structured version   Visualization version   GIF version

Theorem brelrng 5955
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
Assertion
Ref Expression
brelrng ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)

Proof of Theorem brelrng
StepHypRef Expression
1 brcnvg 5893 . . . . 5 ((𝐵𝐺𝐴𝐹) → (𝐵𝐶𝐴𝐴𝐶𝐵))
21ancoms 458 . . . 4 ((𝐴𝐹𝐵𝐺) → (𝐵𝐶𝐴𝐴𝐶𝐵))
32biimp3ar 1469 . . 3 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵𝐶𝐴)
4 breldmg 5923 . . . 4 ((𝐵𝐺𝐴𝐹𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
543com12 1122 . . 3 ((𝐴𝐹𝐵𝐺𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
63, 5syld3an3 1408 . 2 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ dom 𝐶)
7 df-rn 5700 . 2 ran 𝐶 = dom 𝐶
86, 7eleqtrrdi 2850 1 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2106   class class class wbr 5148  ccnv 5688  dom cdm 5689  ran crn 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  brelrn  5956  relelrn  5959  sossfld  6208  fvrn0  6937  pgpfaclem1  20116  perpln2  28734
  Copyright terms: Public domain W3C validator