|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > brelrng | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.) | 
| Ref | Expression | 
|---|---|
| brelrng | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brcnvg 5889 | . . . . 5 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) | |
| 2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) | 
| 3 | 2 | biimp3ar 1471 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵◡𝐶𝐴) | 
| 4 | breldmg 5919 | . . . 4 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) | |
| 5 | 4 | 3com12 1123 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) | 
| 6 | 3, 5 | syld3an3 1410 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ dom ◡𝐶) | 
| 7 | df-rn 5695 | . 2 ⊢ ran 𝐶 = dom ◡𝐶 | |
| 8 | 6, 7 | eleqtrrdi 2851 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5142 ◡ccnv 5683 dom cdm 5684 ran crn 5685 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-cnv 5692 df-dm 5694 df-rn 5695 | 
| This theorem is referenced by: brelrn 5952 relelrn 5955 sossfld 6205 fvrn0 6935 pgpfaclem1 20102 perpln2 28720 | 
| Copyright terms: Public domain | W3C validator |