MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brelrng Structured version   Visualization version   GIF version

Theorem brelrng 5933
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
Assertion
Ref Expression
brelrng ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)

Proof of Theorem brelrng
StepHypRef Expression
1 brcnvg 5872 . . . . 5 ((𝐵𝐺𝐴𝐹) → (𝐵𝐶𝐴𝐴𝐶𝐵))
21ancoms 458 . . . 4 ((𝐴𝐹𝐵𝐺) → (𝐵𝐶𝐴𝐴𝐶𝐵))
32biimp3ar 1466 . . 3 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵𝐶𝐴)
4 breldmg 5902 . . . 4 ((𝐵𝐺𝐴𝐹𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
543com12 1120 . . 3 ((𝐴𝐹𝐵𝐺𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
63, 5syld3an3 1406 . 2 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ dom 𝐶)
7 df-rn 5680 . 2 ran 𝐶 = dom 𝐶
86, 7eleqtrrdi 2838 1 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084  wcel 2098   class class class wbr 5141  ccnv 5668  dom cdm 5669  ran crn 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-cnv 5677  df-dm 5679  df-rn 5680
This theorem is referenced by:  brelrn  5934  relelrn  5937  sossfld  6178  fvrn0  6914  pgpfaclem1  20000  perpln2  28465
  Copyright terms: Public domain W3C validator