![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brelrng | Structured version Visualization version GIF version |
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.) |
Ref | Expression |
---|---|
brelrng | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg 5904 | . . . . 5 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) | |
2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) |
3 | 2 | biimp3ar 1470 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵◡𝐶𝐴) |
4 | breldmg 5934 | . . . 4 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) | |
5 | 4 | 3com12 1123 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) |
6 | 3, 5 | syld3an3 1409 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ dom ◡𝐶) |
7 | df-rn 5711 | . 2 ⊢ ran 𝐶 = dom ◡𝐶 | |
8 | 6, 7 | eleqtrrdi 2855 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 ◡ccnv 5699 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: brelrn 5967 relelrn 5970 sossfld 6217 fvrn0 6950 pgpfaclem1 20125 perpln2 28737 |
Copyright terms: Public domain | W3C validator |