Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brelrng | Structured version Visualization version GIF version |
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.) |
Ref | Expression |
---|---|
brelrng | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg 5788 | . . . . 5 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) | |
2 | 1 | ancoms 459 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) |
3 | 2 | biimp3ar 1469 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵◡𝐶𝐴) |
4 | breldmg 5818 | . . . 4 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) | |
5 | 4 | 3com12 1122 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) |
6 | 3, 5 | syld3an3 1408 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ dom ◡𝐶) |
7 | df-rn 5600 | . 2 ⊢ ran 𝐶 = dom ◡𝐶 | |
8 | 6, 7 | eleqtrrdi 2850 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 ◡ccnv 5588 dom cdm 5589 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: brelrn 5851 relelrn 5854 sossfld 6089 fvrn0 6802 pgpfaclem1 19684 perpln2 27072 |
Copyright terms: Public domain | W3C validator |