MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brelrng Structured version   Visualization version   GIF version

Theorem brelrng 5887
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
Assertion
Ref Expression
brelrng ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)

Proof of Theorem brelrng
StepHypRef Expression
1 brcnvg 5825 . . . . 5 ((𝐵𝐺𝐴𝐹) → (𝐵𝐶𝐴𝐴𝐶𝐵))
21ancoms 458 . . . 4 ((𝐴𝐹𝐵𝐺) → (𝐵𝐶𝐴𝐴𝐶𝐵))
32biimp3ar 1472 . . 3 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵𝐶𝐴)
4 breldmg 5855 . . . 4 ((𝐵𝐺𝐴𝐹𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
543com12 1123 . . 3 ((𝐴𝐹𝐵𝐺𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
63, 5syld3an3 1411 . 2 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ dom 𝐶)
7 df-rn 5632 . 2 ran 𝐶 = dom 𝐶
86, 7eleqtrrdi 2844 1 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2113   class class class wbr 5095  ccnv 5620  dom cdm 5621  ran crn 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-cnv 5629  df-dm 5631  df-rn 5632
This theorem is referenced by:  brelrn  5888  relelrn  5891  sossfld  6140  fvrn0  6858  pgpfaclem1  19999  perpln2  28692
  Copyright terms: Public domain W3C validator