MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem1 Structured version   Visualization version   GIF version

Theorem pgpfaclem1 19684
Description: Lemma for pgpfac 19687. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
pgpfac.2 (𝜑𝑆 ∈ Word 𝐶)
pgpfac.4 (𝜑𝐺dom DProd 𝑆)
pgpfac.5 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
pgpfac.t 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
Assertion
Ref Expression
pgpfaclem1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠   𝑇,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝑆(𝑡,𝑠,𝑟)   𝑇(𝑡,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem1
StepHypRef Expression
1 pgpfac.t . . 3 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
2 pgpfac.2 . . 3 (𝜑𝑆 ∈ Word 𝐶)
3 pgpfac.u . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝐺))
4 pgpfac.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑈)
54subggrp 18758 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
63, 5syl 17 . . . . . . . . 9 (𝜑𝐻 ∈ Grp)
7 eqid 2738 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
87subgacs 18789 . . . . . . . . 9 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
96, 8syl 17 . . . . . . . 8 (𝜑 → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
109acsmred 17365 . . . . . . 7 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
11 pgpfac.x . . . . . . . 8 (𝜑𝑋𝑈)
124subgbas 18759 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
133, 12syl 17 . . . . . . . 8 (𝜑𝑈 = (Base‘𝐻))
1411, 13eleqtrd 2841 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐻))
15 pgpfac.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐻))
1615mrcsncl 17321 . . . . . . 7 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
1710, 14, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
184subsubg 18778 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
193, 18syl 17 . . . . . 6 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
2017, 19mpbid 231 . . . . 5 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈))
2120simpld 495 . . . 4 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺))
224oveq1i 7285 . . . . . . 7 (𝐻s (𝐾‘{𝑋})) = ((𝐺s 𝑈) ↾s (𝐾‘{𝑋}))
2320simprd 496 . . . . . . . 8 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
24 ressabs 16959 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈) → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
253, 23, 24syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
2622, 25eqtrid 2790 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
277, 15cycsubgcyg2 19503 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
286, 14, 27syl2anc 584 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
2926, 28eqeltrrd 2840 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ CycGrp)
30 pgpfac.p . . . . . . 7 (𝜑𝑃 pGrp 𝐺)
31 pgpprm 19198 . . . . . . 7 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
3230, 31syl 17 . . . . . 6 (𝜑𝑃 ∈ ℙ)
33 subgpgp 19202 . . . . . . 7 ((𝑃 pGrp 𝐺 ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
3430, 21, 33syl2anc 584 . . . . . 6 (𝜑𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
35 brelrng 5850 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐺s (𝐾‘{𝑋})) ∈ CycGrp ∧ 𝑃 pGrp (𝐺s (𝐾‘{𝑋}))) → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3632, 29, 34, 35syl3anc 1370 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3729, 36elind 4128 . . . 4 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp ))
38 oveq2 7283 . . . . . 6 (𝑟 = (𝐾‘{𝑋}) → (𝐺s 𝑟) = (𝐺s (𝐾‘{𝑋})))
3938eleq1d 2823 . . . . 5 (𝑟 = (𝐾‘{𝑋}) → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
40 pgpfac.c . . . . 5 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
4139, 40elrab2 3627 . . . 4 ((𝐾‘{𝑋}) ∈ 𝐶 ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
4221, 37, 41sylanbrc 583 . . 3 (𝜑 → (𝐾‘{𝑋}) ∈ 𝐶)
431, 2, 42cats1cld 14568 . 2 (𝜑𝑇 ∈ Word 𝐶)
44 wrdf 14222 . . . . 5 (𝑇 ∈ Word 𝐶𝑇:(0..^(♯‘𝑇))⟶𝐶)
4543, 44syl 17 . . . 4 (𝜑𝑇:(0..^(♯‘𝑇))⟶𝐶)
4640ssrab3 4015 . . . 4 𝐶 ⊆ (SubGrp‘𝐺)
47 fss 6617 . . . 4 ((𝑇:(0..^(♯‘𝑇))⟶𝐶𝐶 ⊆ (SubGrp‘𝐺)) → 𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
4845, 46, 47sylancl 586 . . 3 (𝜑𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
49 lencl 14236 . . . . . . . 8 (𝑆 ∈ Word 𝐶 → (♯‘𝑆) ∈ ℕ0)
502, 49syl 17 . . . . . . 7 (𝜑 → (♯‘𝑆) ∈ ℕ0)
5150nn0zd 12424 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ ℤ)
52 fzosn 13458 . . . . . 6 ((♯‘𝑆) ∈ ℤ → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5351, 52syl 17 . . . . 5 (𝜑 → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5453ineq2d 4146 . . . 4 (𝜑 → ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}))
55 fzodisj 13421 . . . 4 ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ∅
5654, 55eqtr3di 2793 . . 3 (𝜑 → ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}) = ∅)
571fveq2i 6777 . . . . . . 7 (♯‘𝑇) = (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩))
5842s1cld 14308 . . . . . . . 8 (𝜑 → ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶)
59 ccatlen 14278 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶) → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
602, 58, 59syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
6157, 60eqtrid 2790 . . . . . 6 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
62 s1len 14311 . . . . . . 7 (♯‘⟨“(𝐾‘{𝑋})”⟩) = 1
6362oveq2i 7286 . . . . . 6 ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + 1)
6461, 63eqtrdi 2794 . . . . 5 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + 1))
6564oveq2d 7291 . . . 4 (𝜑 → (0..^(♯‘𝑇)) = (0..^((♯‘𝑆) + 1)))
66 nn0uz 12620 . . . . . 6 0 = (ℤ‘0)
6750, 66eleqtrdi 2849 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (ℤ‘0))
68 fzosplitsn 13495 . . . . 5 ((♯‘𝑆) ∈ (ℤ‘0) → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
6967, 68syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
7065, 69eqtrd 2778 . . 3 (𝜑 → (0..^(♯‘𝑇)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
71 eqid 2738 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
72 eqid 2738 . . 3 (0g𝐺) = (0g𝐺)
73 pgpfac.4 . . . 4 (𝜑𝐺dom DProd 𝑆)
74 cats1un 14434 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ (𝐾‘{𝑋}) ∈ 𝐶) → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
752, 42, 74syl2anc 584 . . . . . . 7 (𝜑 → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
761, 75eqtrid 2790 . . . . . 6 (𝜑𝑇 = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
7776reseq1d 5890 . . . . 5 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))))
78 wrdfn 14231 . . . . . . 7 (𝑆 ∈ Word 𝐶𝑆 Fn (0..^(♯‘𝑆)))
792, 78syl 17 . . . . . 6 (𝜑𝑆 Fn (0..^(♯‘𝑆)))
80 fzonel 13401 . . . . . 6 ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))
81 fsnunres 7060 . . . . . 6 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))) → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8279, 80, 81sylancl 586 . . . . 5 (𝜑 → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8377, 82eqtrd 2778 . . . 4 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = 𝑆)
8473, 83breqtrrd 5102 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))))
85 fvex 6787 . . . . . 6 (♯‘𝑆) ∈ V
86 dprdsn 19639 . . . . . 6 (((♯‘𝑆) ∈ V ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8785, 21, 86sylancr 587 . . . . 5 (𝜑 → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8887simpld 495 . . . 4 (𝜑𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
89 wrdfn 14231 . . . . . . 7 (𝑇 ∈ Word 𝐶𝑇 Fn (0..^(♯‘𝑇)))
9043, 89syl 17 . . . . . 6 (𝜑𝑇 Fn (0..^(♯‘𝑇)))
91 ssun2 4107 . . . . . . . 8 {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9285snss 4719 . . . . . . . 8 ((♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}) ↔ {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
9391, 92mpbir 230 . . . . . . 7 (♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9493, 70eleqtrrid 2846 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ (0..^(♯‘𝑇)))
95 fnressn 7030 . . . . . 6 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ (0..^(♯‘𝑇))) → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
9690, 94, 95syl2anc 584 . . . . 5 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
971fveq1i 6775 . . . . . . . . 9 (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆))
9850nn0cnd 12295 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) ∈ ℂ)
9998addid2d 11176 . . . . . . . . . 10 (𝜑 → (0 + (♯‘𝑆)) = (♯‘𝑆))
10099fveq2d 6778 . . . . . . . . 9 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆)))
10197, 100eqtr4id 2797 . . . . . . . 8 (𝜑 → (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))))
102 1nn 11984 . . . . . . . . . . . 12 1 ∈ ℕ
10362, 102eqeltri 2835 . . . . . . . . . . 11 (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ
104 lbfzo0 13427 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)) ↔ (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ)
105103, 104mpbir 230 . . . . . . . . . 10 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))
106105a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)))
107 ccatval3 14284 . . . . . . . . 9 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶 ∧ 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))) → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
1082, 58, 106, 107syl3anc 1370 . . . . . . . 8 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
109 fvex 6787 . . . . . . . . 9 (𝐾‘{𝑋}) ∈ V
110 s1fv 14315 . . . . . . . . 9 ((𝐾‘{𝑋}) ∈ V → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
111109, 110mp1i 13 . . . . . . . 8 (𝜑 → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
112101, 108, 1113eqtrd 2782 . . . . . . 7 (𝜑 → (𝑇‘(♯‘𝑆)) = (𝐾‘{𝑋}))
113112opeq2d 4811 . . . . . 6 (𝜑 → ⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩ = ⟨(♯‘𝑆), (𝐾‘{𝑋})⟩)
114113sneqd 4573 . . . . 5 (𝜑 → {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩} = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11596, 114eqtrd 2778 . . . 4 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11688, 115breqtrrd 5102 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}))
117 pgpfac.g . . . 4 (𝜑𝐺 ∈ Abel)
118 dprdsubg 19627 . . . . 5 (𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))) → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
11984, 118syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
120 dprdsubg 19627 . . . . 5 (𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}) → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
121116, 120syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
12271, 117, 119, 121ablcntzd 19458 . . 3 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
123 pgpfac.i . . . 4 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12483oveq2d 7291 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = (𝐺 DProd 𝑆))
125 pgpfac.5 . . . . . . 7 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
126124, 125eqtrd 2778 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = 𝑊)
127115oveq2d 7291 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
12887simprd 496 . . . . . . 7 (𝜑 → (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋}))
129127, 128eqtrd 2778 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐾‘{𝑋}))
130126, 129ineq12d 4147 . . . . 5 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊 ∩ (𝐾‘{𝑋})))
131 incom 4135 . . . . 5 (𝑊 ∩ (𝐾‘{𝑋})) = ((𝐾‘{𝑋}) ∩ 𝑊)
132130, 131eqtrdi 2794 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = ((𝐾‘{𝑋}) ∩ 𝑊))
1334, 72subg0 18761 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
1343, 133syl 17 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
135 pgpfac.0 . . . . . 6 0 = (0g𝐻)
136134, 135eqtr4di 2796 . . . . 5 (𝜑 → (0g𝐺) = 0 )
137136sneqd 4573 . . . 4 (𝜑 → {(0g𝐺)} = { 0 })
138123, 132, 1373eqtr4d 2788 . . 3 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = {(0g𝐺)})
13948, 56, 70, 71, 72, 84, 116, 122, 138dmdprdsplit2 19649 . 2 (𝜑𝐺dom DProd 𝑇)
140 eqid 2738 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
14148, 56, 70, 140, 139dprdsplit 19651 . . . 4 (𝜑 → (𝐺 DProd 𝑇) = ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
142126, 129oveq12d 7293 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})))
143126, 119eqeltrrd 2840 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
144140lsmcom 19459 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
145117, 143, 21, 144syl3anc 1370 . . . 4 (𝜑 → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
146141, 142, 1453eqtrd 2782 . . 3 (𝜑 → (𝐺 DProd 𝑇) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
147 pgpfac.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐻))
1487subgss 18756 . . . . . 6 (𝑊 ∈ (SubGrp‘𝐻) → 𝑊 ⊆ (Base‘𝐻))
149147, 148syl 17 . . . . 5 (𝜑𝑊 ⊆ (Base‘𝐻))
150149, 13sseqtrrd 3962 . . . 4 (𝜑𝑊𝑈)
151 pgpfac.l . . . . 5 = (LSSum‘𝐻)
1524, 140, 151subglsm 19279 . . . 4 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈𝑊𝑈) → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
1533, 23, 150, 152syl3anc 1370 . . 3 (𝜑 → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
154 pgpfac.s . . 3 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
155146, 153, 1543eqtrd 2782 . 2 (𝜑 → (𝐺 DProd 𝑇) = 𝑈)
156 breq2 5078 . . . 4 (𝑠 = 𝑇 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑇))
157 oveq2 7283 . . . . 5 (𝑠 = 𝑇 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑇))
158157eqeq1d 2740 . . . 4 (𝑠 = 𝑇 → ((𝐺 DProd 𝑠) = 𝑈 ↔ (𝐺 DProd 𝑇) = 𝑈))
159156, 158anbi12d 631 . . 3 (𝑠 = 𝑇 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈) ↔ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)))
160159rspcev 3561 . 2 ((𝑇 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
16143, 139, 155, 160syl12anc 834 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cun 3885  cin 3886  wss 3887  wpss 3888  c0 4256  {csn 4561  cop 4567   class class class wbr 5074  dom cdm 5589  ran crn 5590  cres 5591   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  1c1 10872   + caddc 10874  cn 11973  0cn0 12233  cz 12319  cuz 12582  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  cprime 16376  Basecbs 16912  s cress 16941  0gc0g 17150  Moorecmre 17291  mrClscmrc 17292  ACScacs 17294  Grpcgrp 18577  SubGrpcsubg 18749  Cntzccntz 18921  odcod 19132  gExcgex 19133   pGrp cpgp 19134  LSSumclsm 19239  Abelcabl 19387  CycGrpccyg 19477   DProd cdprd 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-od 19136  df-pgp 19138  df-lsm 19241  df-cmn 19388  df-abl 19389  df-cyg 19478  df-dprd 19598
This theorem is referenced by:  pgpfaclem2  19685
  Copyright terms: Public domain W3C validator