MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem1 Structured version   Visualization version   GIF version

Theorem pgpfaclem1 19197
Description: Lemma for pgpfac 19200. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
pgpfac.2 (𝜑𝑆 ∈ Word 𝐶)
pgpfac.4 (𝜑𝐺dom DProd 𝑆)
pgpfac.5 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
pgpfac.t 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
Assertion
Ref Expression
pgpfaclem1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠   𝑇,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝑆(𝑡,𝑠,𝑟)   𝑇(𝑡,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem1
StepHypRef Expression
1 pgpfac.t . . 3 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
2 pgpfac.2 . . 3 (𝜑𝑆 ∈ Word 𝐶)
3 pgpfac.u . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝐺))
4 pgpfac.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑈)
54subggrp 18276 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
63, 5syl 17 . . . . . . . . 9 (𝜑𝐻 ∈ Grp)
7 eqid 2821 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
87subgacs 18307 . . . . . . . . 9 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
96, 8syl 17 . . . . . . . 8 (𝜑 → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
109acsmred 16921 . . . . . . 7 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
11 pgpfac.x . . . . . . . 8 (𝜑𝑋𝑈)
124subgbas 18277 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
133, 12syl 17 . . . . . . . 8 (𝜑𝑈 = (Base‘𝐻))
1411, 13eleqtrd 2915 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐻))
15 pgpfac.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐻))
1615mrcsncl 16877 . . . . . . 7 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
1710, 14, 16syl2anc 586 . . . . . 6 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
184subsubg 18296 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
193, 18syl 17 . . . . . 6 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
2017, 19mpbid 234 . . . . 5 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈))
2120simpld 497 . . . 4 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺))
224oveq1i 7160 . . . . . . 7 (𝐻s (𝐾‘{𝑋})) = ((𝐺s 𝑈) ↾s (𝐾‘{𝑋}))
2320simprd 498 . . . . . . . 8 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
24 ressabs 16557 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈) → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
253, 23, 24syl2anc 586 . . . . . . 7 (𝜑 → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
2622, 25syl5eq 2868 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
277, 15cycsubgcyg2 19016 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
286, 14, 27syl2anc 586 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
2926, 28eqeltrrd 2914 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ CycGrp)
30 pgpfac.p . . . . . . 7 (𝜑𝑃 pGrp 𝐺)
31 pgpprm 18712 . . . . . . 7 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
3230, 31syl 17 . . . . . 6 (𝜑𝑃 ∈ ℙ)
33 subgpgp 18716 . . . . . . 7 ((𝑃 pGrp 𝐺 ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
3430, 21, 33syl2anc 586 . . . . . 6 (𝜑𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
35 brelrng 5805 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐺s (𝐾‘{𝑋})) ∈ CycGrp ∧ 𝑃 pGrp (𝐺s (𝐾‘{𝑋}))) → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3632, 29, 34, 35syl3anc 1367 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3729, 36elind 4170 . . . 4 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp ))
38 oveq2 7158 . . . . . 6 (𝑟 = (𝐾‘{𝑋}) → (𝐺s 𝑟) = (𝐺s (𝐾‘{𝑋})))
3938eleq1d 2897 . . . . 5 (𝑟 = (𝐾‘{𝑋}) → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
40 pgpfac.c . . . . 5 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
4139, 40elrab2 3682 . . . 4 ((𝐾‘{𝑋}) ∈ 𝐶 ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
4221, 37, 41sylanbrc 585 . . 3 (𝜑 → (𝐾‘{𝑋}) ∈ 𝐶)
431, 2, 42cats1cld 14211 . 2 (𝜑𝑇 ∈ Word 𝐶)
44 wrdf 13860 . . . . 5 (𝑇 ∈ Word 𝐶𝑇:(0..^(♯‘𝑇))⟶𝐶)
4543, 44syl 17 . . . 4 (𝜑𝑇:(0..^(♯‘𝑇))⟶𝐶)
4640ssrab3 4056 . . . 4 𝐶 ⊆ (SubGrp‘𝐺)
47 fss 6521 . . . 4 ((𝑇:(0..^(♯‘𝑇))⟶𝐶𝐶 ⊆ (SubGrp‘𝐺)) → 𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
4845, 46, 47sylancl 588 . . 3 (𝜑𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
49 fzodisj 13065 . . . 4 ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ∅
50 lencl 13877 . . . . . . . 8 (𝑆 ∈ Word 𝐶 → (♯‘𝑆) ∈ ℕ0)
512, 50syl 17 . . . . . . 7 (𝜑 → (♯‘𝑆) ∈ ℕ0)
5251nn0zd 12079 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ ℤ)
53 fzosn 13102 . . . . . 6 ((♯‘𝑆) ∈ ℤ → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5452, 53syl 17 . . . . 5 (𝜑 → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5554ineq2d 4188 . . . 4 (𝜑 → ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}))
5649, 55syl5reqr 2871 . . 3 (𝜑 → ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}) = ∅)
571fveq2i 6667 . . . . . . 7 (♯‘𝑇) = (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩))
5842s1cld 13951 . . . . . . . 8 (𝜑 → ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶)
59 ccatlen 13921 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶) → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
602, 58, 59syl2anc 586 . . . . . . 7 (𝜑 → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
6157, 60syl5eq 2868 . . . . . 6 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
62 s1len 13954 . . . . . . 7 (♯‘⟨“(𝐾‘{𝑋})”⟩) = 1
6362oveq2i 7161 . . . . . 6 ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + 1)
6461, 63syl6eq 2872 . . . . 5 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + 1))
6564oveq2d 7166 . . . 4 (𝜑 → (0..^(♯‘𝑇)) = (0..^((♯‘𝑆) + 1)))
66 nn0uz 12274 . . . . . 6 0 = (ℤ‘0)
6751, 66eleqtrdi 2923 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (ℤ‘0))
68 fzosplitsn 13139 . . . . 5 ((♯‘𝑆) ∈ (ℤ‘0) → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
6967, 68syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
7065, 69eqtrd 2856 . . 3 (𝜑 → (0..^(♯‘𝑇)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
71 eqid 2821 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
72 eqid 2821 . . 3 (0g𝐺) = (0g𝐺)
73 pgpfac.4 . . . 4 (𝜑𝐺dom DProd 𝑆)
74 cats1un 14077 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ (𝐾‘{𝑋}) ∈ 𝐶) → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
752, 42, 74syl2anc 586 . . . . . . 7 (𝜑 → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
761, 75syl5eq 2868 . . . . . 6 (𝜑𝑇 = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
7776reseq1d 5846 . . . . 5 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))))
78 wrdfn 13870 . . . . . . 7 (𝑆 ∈ Word 𝐶𝑆 Fn (0..^(♯‘𝑆)))
792, 78syl 17 . . . . . 6 (𝜑𝑆 Fn (0..^(♯‘𝑆)))
80 fzonel 13045 . . . . . 6 ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))
81 fsnunres 6944 . . . . . 6 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))) → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8279, 80, 81sylancl 588 . . . . 5 (𝜑 → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8377, 82eqtrd 2856 . . . 4 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = 𝑆)
8473, 83breqtrrd 5086 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))))
85 fvex 6677 . . . . . 6 (♯‘𝑆) ∈ V
86 dprdsn 19152 . . . . . 6 (((♯‘𝑆) ∈ V ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8785, 21, 86sylancr 589 . . . . 5 (𝜑 → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8887simpld 497 . . . 4 (𝜑𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
89 wrdfn 13870 . . . . . . 7 (𝑇 ∈ Word 𝐶𝑇 Fn (0..^(♯‘𝑇)))
9043, 89syl 17 . . . . . 6 (𝜑𝑇 Fn (0..^(♯‘𝑇)))
91 ssun2 4148 . . . . . . . 8 {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9285snss 4711 . . . . . . . 8 ((♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}) ↔ {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
9391, 92mpbir 233 . . . . . . 7 (♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9493, 70eleqtrrid 2920 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ (0..^(♯‘𝑇)))
95 fnressn 6914 . . . . . 6 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ (0..^(♯‘𝑇))) → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
9690, 94, 95syl2anc 586 . . . . 5 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
9751nn0cnd 11951 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) ∈ ℂ)
9897addid2d 10835 . . . . . . . . . 10 (𝜑 → (0 + (♯‘𝑆)) = (♯‘𝑆))
9998fveq2d 6668 . . . . . . . . 9 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆)))
1001fveq1i 6665 . . . . . . . . 9 (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆))
10199, 100syl6reqr 2875 . . . . . . . 8 (𝜑 → (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))))
102 1nn 11643 . . . . . . . . . . . 12 1 ∈ ℕ
10362, 102eqeltri 2909 . . . . . . . . . . 11 (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ
104 lbfzo0 13071 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)) ↔ (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ)
105103, 104mpbir 233 . . . . . . . . . 10 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))
106105a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)))
107 ccatval3 13927 . . . . . . . . 9 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶 ∧ 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))) → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
1082, 58, 106, 107syl3anc 1367 . . . . . . . 8 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
109 fvex 6677 . . . . . . . . 9 (𝐾‘{𝑋}) ∈ V
110 s1fv 13958 . . . . . . . . 9 ((𝐾‘{𝑋}) ∈ V → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
111109, 110mp1i 13 . . . . . . . 8 (𝜑 → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
112101, 108, 1113eqtrd 2860 . . . . . . 7 (𝜑 → (𝑇‘(♯‘𝑆)) = (𝐾‘{𝑋}))
113112opeq2d 4803 . . . . . 6 (𝜑 → ⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩ = ⟨(♯‘𝑆), (𝐾‘{𝑋})⟩)
114113sneqd 4572 . . . . 5 (𝜑 → {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩} = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11596, 114eqtrd 2856 . . . 4 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11688, 115breqtrrd 5086 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}))
117 pgpfac.g . . . 4 (𝜑𝐺 ∈ Abel)
118 dprdsubg 19140 . . . . 5 (𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))) → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
11984, 118syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
120 dprdsubg 19140 . . . . 5 (𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}) → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
121116, 120syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
12271, 117, 119, 121ablcntzd 18971 . . 3 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
123 pgpfac.i . . . 4 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12483oveq2d 7166 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = (𝐺 DProd 𝑆))
125 pgpfac.5 . . . . . . 7 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
126124, 125eqtrd 2856 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = 𝑊)
127115oveq2d 7166 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
12887simprd 498 . . . . . . 7 (𝜑 → (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋}))
129127, 128eqtrd 2856 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐾‘{𝑋}))
130126, 129ineq12d 4189 . . . . 5 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊 ∩ (𝐾‘{𝑋})))
131 incom 4177 . . . . 5 (𝑊 ∩ (𝐾‘{𝑋})) = ((𝐾‘{𝑋}) ∩ 𝑊)
132130, 131syl6eq 2872 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = ((𝐾‘{𝑋}) ∩ 𝑊))
1334, 72subg0 18279 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
1343, 133syl 17 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
135 pgpfac.0 . . . . . 6 0 = (0g𝐻)
136134, 135syl6eqr 2874 . . . . 5 (𝜑 → (0g𝐺) = 0 )
137136sneqd 4572 . . . 4 (𝜑 → {(0g𝐺)} = { 0 })
138123, 132, 1373eqtr4d 2866 . . 3 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = {(0g𝐺)})
13948, 56, 70, 71, 72, 84, 116, 122, 138dmdprdsplit2 19162 . 2 (𝜑𝐺dom DProd 𝑇)
140 eqid 2821 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
14148, 56, 70, 140, 139dprdsplit 19164 . . . 4 (𝜑 → (𝐺 DProd 𝑇) = ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
142126, 129oveq12d 7168 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})))
143126, 119eqeltrrd 2914 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
144140lsmcom 18972 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
145117, 143, 21, 144syl3anc 1367 . . . 4 (𝜑 → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
146141, 142, 1453eqtrd 2860 . . 3 (𝜑 → (𝐺 DProd 𝑇) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
147 pgpfac.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐻))
1487subgss 18274 . . . . . 6 (𝑊 ∈ (SubGrp‘𝐻) → 𝑊 ⊆ (Base‘𝐻))
149147, 148syl 17 . . . . 5 (𝜑𝑊 ⊆ (Base‘𝐻))
150149, 13sseqtrrd 4007 . . . 4 (𝜑𝑊𝑈)
151 pgpfac.l . . . . 5 = (LSSum‘𝐻)
1524, 140, 151subglsm 18793 . . . 4 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈𝑊𝑈) → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
1533, 23, 150, 152syl3anc 1367 . . 3 (𝜑 → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
154 pgpfac.s . . 3 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
155146, 153, 1543eqtrd 2860 . 2 (𝜑 → (𝐺 DProd 𝑇) = 𝑈)
156 breq2 5062 . . . 4 (𝑠 = 𝑇 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑇))
157 oveq2 7158 . . . . 5 (𝑠 = 𝑇 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑇))
158157eqeq1d 2823 . . . 4 (𝑠 = 𝑇 → ((𝐺 DProd 𝑠) = 𝑈 ↔ (𝐺 DProd 𝑇) = 𝑈))
159156, 158anbi12d 632 . . 3 (𝑠 = 𝑇 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈) ↔ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)))
160159rspcev 3622 . 2 ((𝑇 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
16143, 139, 155, 160syl12anc 834 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cun 3933  cin 3934  wss 3935  wpss 3936  c0 4290  {csn 4560  cop 4566   class class class wbr 5058  dom cdm 5549  ran crn 5550  cres 5551   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  Fincfn 8503  0cc0 10531  1c1 10532   + caddc 10534  cn 11632  0cn0 11891  cz 11975  cuz 12237  ..^cfzo 13027  chash 13684  Word cword 13855   ++ cconcat 13916  ⟨“cs1 13943  cprime 16009  Basecbs 16477  s cress 16478  0gc0g 16707  Moorecmre 16847  mrClscmrc 16848  ACScacs 16850  Grpcgrp 18097  SubGrpcsubg 18267  Cntzccntz 18439  odcod 18646  gExcgex 18647   pGrp cpgp 18648  LSSumclsm 18753  Abelcabl 18901  CycGrpccyg 18990   DProd cdprd 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-gim 18393  df-cntz 18441  df-oppg 18468  df-od 18650  df-pgp 18652  df-lsm 18755  df-cmn 18902  df-abl 18903  df-cyg 18991  df-dprd 19111
This theorem is referenced by:  pgpfaclem2  19198
  Copyright terms: Public domain W3C validator