MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem1 Structured version   Visualization version   GIF version

Theorem pgpfaclem1 20116
Description: Lemma for pgpfac 20119. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
pgpfac.2 (𝜑𝑆 ∈ Word 𝐶)
pgpfac.4 (𝜑𝐺dom DProd 𝑆)
pgpfac.5 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
pgpfac.t 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
Assertion
Ref Expression
pgpfaclem1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠   𝑇,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝑆(𝑡,𝑠,𝑟)   𝑇(𝑡,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem1
StepHypRef Expression
1 pgpfac.t . . 3 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
2 pgpfac.2 . . 3 (𝜑𝑆 ∈ Word 𝐶)
3 pgpfac.u . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝐺))
4 pgpfac.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑈)
54subggrp 19160 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
63, 5syl 17 . . . . . . . . 9 (𝜑𝐻 ∈ Grp)
7 eqid 2735 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
87subgacs 19192 . . . . . . . . 9 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
96, 8syl 17 . . . . . . . 8 (𝜑 → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
109acsmred 17701 . . . . . . 7 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
11 pgpfac.x . . . . . . . 8 (𝜑𝑋𝑈)
124subgbas 19161 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
133, 12syl 17 . . . . . . . 8 (𝜑𝑈 = (Base‘𝐻))
1411, 13eleqtrd 2841 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐻))
15 pgpfac.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐻))
1615mrcsncl 17657 . . . . . . 7 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
1710, 14, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
184subsubg 19180 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
193, 18syl 17 . . . . . 6 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
2017, 19mpbid 232 . . . . 5 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈))
2120simpld 494 . . . 4 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺))
224oveq1i 7441 . . . . . . 7 (𝐻s (𝐾‘{𝑋})) = ((𝐺s 𝑈) ↾s (𝐾‘{𝑋}))
2320simprd 495 . . . . . . . 8 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
24 ressabs 17295 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈) → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
253, 23, 24syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
2622, 25eqtrid 2787 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
277, 15cycsubgcyg2 19935 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
286, 14, 27syl2anc 584 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
2926, 28eqeltrrd 2840 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ CycGrp)
30 pgpfac.p . . . . . . 7 (𝜑𝑃 pGrp 𝐺)
31 pgpprm 19626 . . . . . . 7 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
3230, 31syl 17 . . . . . 6 (𝜑𝑃 ∈ ℙ)
33 subgpgp 19630 . . . . . . 7 ((𝑃 pGrp 𝐺 ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
3430, 21, 33syl2anc 584 . . . . . 6 (𝜑𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
35 brelrng 5955 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐺s (𝐾‘{𝑋})) ∈ CycGrp ∧ 𝑃 pGrp (𝐺s (𝐾‘{𝑋}))) → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3632, 29, 34, 35syl3anc 1370 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3729, 36elind 4210 . . . 4 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp ))
38 oveq2 7439 . . . . . 6 (𝑟 = (𝐾‘{𝑋}) → (𝐺s 𝑟) = (𝐺s (𝐾‘{𝑋})))
3938eleq1d 2824 . . . . 5 (𝑟 = (𝐾‘{𝑋}) → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
40 pgpfac.c . . . . 5 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
4139, 40elrab2 3698 . . . 4 ((𝐾‘{𝑋}) ∈ 𝐶 ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
4221, 37, 41sylanbrc 583 . . 3 (𝜑 → (𝐾‘{𝑋}) ∈ 𝐶)
431, 2, 42cats1cld 14891 . 2 (𝜑𝑇 ∈ Word 𝐶)
44 wrdf 14554 . . . . 5 (𝑇 ∈ Word 𝐶𝑇:(0..^(♯‘𝑇))⟶𝐶)
4543, 44syl 17 . . . 4 (𝜑𝑇:(0..^(♯‘𝑇))⟶𝐶)
4640ssrab3 4092 . . . 4 𝐶 ⊆ (SubGrp‘𝐺)
47 fss 6753 . . . 4 ((𝑇:(0..^(♯‘𝑇))⟶𝐶𝐶 ⊆ (SubGrp‘𝐺)) → 𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
4845, 46, 47sylancl 586 . . 3 (𝜑𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
49 lencl 14568 . . . . . . . 8 (𝑆 ∈ Word 𝐶 → (♯‘𝑆) ∈ ℕ0)
502, 49syl 17 . . . . . . 7 (𝜑 → (♯‘𝑆) ∈ ℕ0)
5150nn0zd 12637 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ ℤ)
52 fzosn 13772 . . . . . 6 ((♯‘𝑆) ∈ ℤ → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5351, 52syl 17 . . . . 5 (𝜑 → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5453ineq2d 4228 . . . 4 (𝜑 → ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}))
55 fzodisj 13730 . . . 4 ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ∅
5654, 55eqtr3di 2790 . . 3 (𝜑 → ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}) = ∅)
571fveq2i 6910 . . . . . . 7 (♯‘𝑇) = (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩))
5842s1cld 14638 . . . . . . . 8 (𝜑 → ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶)
59 ccatlen 14610 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶) → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
602, 58, 59syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
6157, 60eqtrid 2787 . . . . . 6 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
62 s1len 14641 . . . . . . 7 (♯‘⟨“(𝐾‘{𝑋})”⟩) = 1
6362oveq2i 7442 . . . . . 6 ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + 1)
6461, 63eqtrdi 2791 . . . . 5 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + 1))
6564oveq2d 7447 . . . 4 (𝜑 → (0..^(♯‘𝑇)) = (0..^((♯‘𝑆) + 1)))
66 nn0uz 12918 . . . . . 6 0 = (ℤ‘0)
6750, 66eleqtrdi 2849 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (ℤ‘0))
68 fzosplitsn 13811 . . . . 5 ((♯‘𝑆) ∈ (ℤ‘0) → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
6967, 68syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
7065, 69eqtrd 2775 . . 3 (𝜑 → (0..^(♯‘𝑇)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
71 eqid 2735 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
72 eqid 2735 . . 3 (0g𝐺) = (0g𝐺)
73 pgpfac.4 . . . 4 (𝜑𝐺dom DProd 𝑆)
74 cats1un 14756 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ (𝐾‘{𝑋}) ∈ 𝐶) → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
752, 42, 74syl2anc 584 . . . . . . 7 (𝜑 → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
761, 75eqtrid 2787 . . . . . 6 (𝜑𝑇 = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
7776reseq1d 5999 . . . . 5 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))))
78 wrdfn 14563 . . . . . . 7 (𝑆 ∈ Word 𝐶𝑆 Fn (0..^(♯‘𝑆)))
792, 78syl 17 . . . . . 6 (𝜑𝑆 Fn (0..^(♯‘𝑆)))
80 fzonel 13710 . . . . . 6 ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))
81 fsnunres 7208 . . . . . 6 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))) → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8279, 80, 81sylancl 586 . . . . 5 (𝜑 → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8377, 82eqtrd 2775 . . . 4 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = 𝑆)
8473, 83breqtrrd 5176 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))))
85 fvex 6920 . . . . . 6 (♯‘𝑆) ∈ V
86 dprdsn 20071 . . . . . 6 (((♯‘𝑆) ∈ V ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8785, 21, 86sylancr 587 . . . . 5 (𝜑 → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8887simpld 494 . . . 4 (𝜑𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
89 wrdfn 14563 . . . . . . 7 (𝑇 ∈ Word 𝐶𝑇 Fn (0..^(♯‘𝑇)))
9043, 89syl 17 . . . . . 6 (𝜑𝑇 Fn (0..^(♯‘𝑇)))
91 ssun2 4189 . . . . . . . 8 {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9285snss 4790 . . . . . . . 8 ((♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}) ↔ {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
9391, 92mpbir 231 . . . . . . 7 (♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9493, 70eleqtrrid 2846 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ (0..^(♯‘𝑇)))
95 fnressn 7178 . . . . . 6 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ (0..^(♯‘𝑇))) → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
9690, 94, 95syl2anc 584 . . . . 5 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
971fveq1i 6908 . . . . . . . . 9 (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆))
9850nn0cnd 12587 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) ∈ ℂ)
9998addlidd 11460 . . . . . . . . . 10 (𝜑 → (0 + (♯‘𝑆)) = (♯‘𝑆))
10099fveq2d 6911 . . . . . . . . 9 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆)))
10197, 100eqtr4id 2794 . . . . . . . 8 (𝜑 → (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))))
102 1nn 12275 . . . . . . . . . . . 12 1 ∈ ℕ
10362, 102eqeltri 2835 . . . . . . . . . . 11 (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ
104 lbfzo0 13736 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)) ↔ (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ)
105103, 104mpbir 231 . . . . . . . . . 10 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))
106105a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)))
107 ccatval3 14614 . . . . . . . . 9 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶 ∧ 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))) → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
1082, 58, 106, 107syl3anc 1370 . . . . . . . 8 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
109 fvex 6920 . . . . . . . . 9 (𝐾‘{𝑋}) ∈ V
110 s1fv 14645 . . . . . . . . 9 ((𝐾‘{𝑋}) ∈ V → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
111109, 110mp1i 13 . . . . . . . 8 (𝜑 → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
112101, 108, 1113eqtrd 2779 . . . . . . 7 (𝜑 → (𝑇‘(♯‘𝑆)) = (𝐾‘{𝑋}))
113112opeq2d 4885 . . . . . 6 (𝜑 → ⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩ = ⟨(♯‘𝑆), (𝐾‘{𝑋})⟩)
114113sneqd 4643 . . . . 5 (𝜑 → {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩} = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11596, 114eqtrd 2775 . . . 4 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11688, 115breqtrrd 5176 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}))
117 pgpfac.g . . . 4 (𝜑𝐺 ∈ Abel)
118 dprdsubg 20059 . . . . 5 (𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))) → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
11984, 118syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
120 dprdsubg 20059 . . . . 5 (𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}) → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
121116, 120syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
12271, 117, 119, 121ablcntzd 19890 . . 3 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
123 pgpfac.i . . . 4 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12483oveq2d 7447 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = (𝐺 DProd 𝑆))
125 pgpfac.5 . . . . . . 7 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
126124, 125eqtrd 2775 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = 𝑊)
127115oveq2d 7447 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
12887simprd 495 . . . . . . 7 (𝜑 → (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋}))
129127, 128eqtrd 2775 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐾‘{𝑋}))
130126, 129ineq12d 4229 . . . . 5 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊 ∩ (𝐾‘{𝑋})))
131 incom 4217 . . . . 5 (𝑊 ∩ (𝐾‘{𝑋})) = ((𝐾‘{𝑋}) ∩ 𝑊)
132130, 131eqtrdi 2791 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = ((𝐾‘{𝑋}) ∩ 𝑊))
1334, 72subg0 19163 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
1343, 133syl 17 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
135 pgpfac.0 . . . . . 6 0 = (0g𝐻)
136134, 135eqtr4di 2793 . . . . 5 (𝜑 → (0g𝐺) = 0 )
137136sneqd 4643 . . . 4 (𝜑 → {(0g𝐺)} = { 0 })
138123, 132, 1373eqtr4d 2785 . . 3 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = {(0g𝐺)})
13948, 56, 70, 71, 72, 84, 116, 122, 138dmdprdsplit2 20081 . 2 (𝜑𝐺dom DProd 𝑇)
140 eqid 2735 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
14148, 56, 70, 140, 139dprdsplit 20083 . . . 4 (𝜑 → (𝐺 DProd 𝑇) = ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
142126, 129oveq12d 7449 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})))
143126, 119eqeltrrd 2840 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
144140lsmcom 19891 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
145117, 143, 21, 144syl3anc 1370 . . . 4 (𝜑 → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
146141, 142, 1453eqtrd 2779 . . 3 (𝜑 → (𝐺 DProd 𝑇) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
147 pgpfac.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐻))
1487subgss 19158 . . . . . 6 (𝑊 ∈ (SubGrp‘𝐻) → 𝑊 ⊆ (Base‘𝐻))
149147, 148syl 17 . . . . 5 (𝜑𝑊 ⊆ (Base‘𝐻))
150149, 13sseqtrrd 4037 . . . 4 (𝜑𝑊𝑈)
151 pgpfac.l . . . . 5 = (LSSum‘𝐻)
1524, 140, 151subglsm 19706 . . . 4 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈𝑊𝑈) → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
1533, 23, 150, 152syl3anc 1370 . . 3 (𝜑 → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
154 pgpfac.s . . 3 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
155146, 153, 1543eqtrd 2779 . 2 (𝜑 → (𝐺 DProd 𝑇) = 𝑈)
156 breq2 5152 . . . 4 (𝑠 = 𝑇 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑇))
157 oveq2 7439 . . . . 5 (𝑠 = 𝑇 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑇))
158157eqeq1d 2737 . . . 4 (𝑠 = 𝑇 → ((𝐺 DProd 𝑠) = 𝑈 ↔ (𝐺 DProd 𝑇) = 𝑈))
159156, 158anbi12d 632 . . 3 (𝑠 = 𝑇 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈) ↔ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)))
160159rspcev 3622 . 2 ((𝑇 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
16143, 139, 155, 160syl12anc 837 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cun 3961  cin 3962  wss 3963  wpss 3964  c0 4339  {csn 4631  cop 4637   class class class wbr 5148  dom cdm 5689  ran crn 5690  cres 5691   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  1c1 11154   + caddc 11156  cn 12264  0cn0 12524  cz 12611  cuz 12876  ..^cfzo 13691  chash 14366  Word cword 14549   ++ cconcat 14605  ⟨“cs1 14630  cprime 16705  Basecbs 17245  s cress 17274  0gc0g 17486  Moorecmre 17627  mrClscmrc 17628  ACScacs 17630  Grpcgrp 18964  SubGrpcsubg 19151  Cntzccntz 19346  odcod 19557  gExcgex 19558   pGrp cpgp 19559  LSSumclsm 19667  Abelcabl 19814  CycGrpccyg 19910   DProd cdprd 20028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-gim 19290  df-cntz 19348  df-oppg 19377  df-od 19561  df-pgp 19563  df-lsm 19669  df-cmn 19815  df-abl 19816  df-cyg 19911  df-dprd 20030
This theorem is referenced by:  pgpfaclem2  20117
  Copyright terms: Public domain W3C validator