MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem1 Structured version   Visualization version   GIF version

Theorem pgpfaclem1 20005
Description: Lemma for pgpfac 20008. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
pgpfac.2 (𝜑𝑆 ∈ Word 𝐶)
pgpfac.4 (𝜑𝐺dom DProd 𝑆)
pgpfac.5 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
pgpfac.t 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
Assertion
Ref Expression
pgpfaclem1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠   𝑇,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝑆(𝑡,𝑠,𝑟)   𝑇(𝑡,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem1
StepHypRef Expression
1 pgpfac.t . . 3 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
2 pgpfac.2 . . 3 (𝜑𝑆 ∈ Word 𝐶)
3 pgpfac.u . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝐺))
4 pgpfac.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑈)
54subggrp 19052 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
63, 5syl 17 . . . . . . . . 9 (𝜑𝐻 ∈ Grp)
7 eqid 2733 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
87subgacs 19083 . . . . . . . . 9 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
96, 8syl 17 . . . . . . . 8 (𝜑 → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
109acsmred 17572 . . . . . . 7 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
11 pgpfac.x . . . . . . . 8 (𝜑𝑋𝑈)
124subgbas 19053 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
133, 12syl 17 . . . . . . . 8 (𝜑𝑈 = (Base‘𝐻))
1411, 13eleqtrd 2835 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐻))
15 pgpfac.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐻))
1615mrcsncl 17528 . . . . . . 7 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
1710, 14, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
184subsubg 19072 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
193, 18syl 17 . . . . . 6 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
2017, 19mpbid 232 . . . . 5 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈))
2120simpld 494 . . . 4 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺))
224oveq1i 7365 . . . . . . 7 (𝐻s (𝐾‘{𝑋})) = ((𝐺s 𝑈) ↾s (𝐾‘{𝑋}))
2320simprd 495 . . . . . . . 8 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
24 ressabs 17169 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈) → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
253, 23, 24syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
2622, 25eqtrid 2780 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
277, 15cycsubgcyg2 19824 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
286, 14, 27syl2anc 584 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
2926, 28eqeltrrd 2834 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ CycGrp)
30 pgpfac.p . . . . . . 7 (𝜑𝑃 pGrp 𝐺)
31 pgpprm 19515 . . . . . . 7 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
3230, 31syl 17 . . . . . 6 (𝜑𝑃 ∈ ℙ)
33 subgpgp 19519 . . . . . . 7 ((𝑃 pGrp 𝐺 ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
3430, 21, 33syl2anc 584 . . . . . 6 (𝜑𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
35 brelrng 5888 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐺s (𝐾‘{𝑋})) ∈ CycGrp ∧ 𝑃 pGrp (𝐺s (𝐾‘{𝑋}))) → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3632, 29, 34, 35syl3anc 1373 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3729, 36elind 4151 . . . 4 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp ))
38 oveq2 7363 . . . . . 6 (𝑟 = (𝐾‘{𝑋}) → (𝐺s 𝑟) = (𝐺s (𝐾‘{𝑋})))
3938eleq1d 2818 . . . . 5 (𝑟 = (𝐾‘{𝑋}) → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
40 pgpfac.c . . . . 5 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
4139, 40elrab2 3647 . . . 4 ((𝐾‘{𝑋}) ∈ 𝐶 ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
4221, 37, 41sylanbrc 583 . . 3 (𝜑 → (𝐾‘{𝑋}) ∈ 𝐶)
431, 2, 42cats1cld 14772 . 2 (𝜑𝑇 ∈ Word 𝐶)
44 wrdf 14435 . . . . 5 (𝑇 ∈ Word 𝐶𝑇:(0..^(♯‘𝑇))⟶𝐶)
4543, 44syl 17 . . . 4 (𝜑𝑇:(0..^(♯‘𝑇))⟶𝐶)
4640ssrab3 4033 . . . 4 𝐶 ⊆ (SubGrp‘𝐺)
47 fss 6675 . . . 4 ((𝑇:(0..^(♯‘𝑇))⟶𝐶𝐶 ⊆ (SubGrp‘𝐺)) → 𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
4845, 46, 47sylancl 586 . . 3 (𝜑𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
49 lencl 14450 . . . . . . . 8 (𝑆 ∈ Word 𝐶 → (♯‘𝑆) ∈ ℕ0)
502, 49syl 17 . . . . . . 7 (𝜑 → (♯‘𝑆) ∈ ℕ0)
5150nn0zd 12504 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ ℤ)
52 fzosn 13646 . . . . . 6 ((♯‘𝑆) ∈ ℤ → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5351, 52syl 17 . . . . 5 (𝜑 → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5453ineq2d 4171 . . . 4 (𝜑 → ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}))
55 fzodisj 13603 . . . 4 ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ∅
5654, 55eqtr3di 2783 . . 3 (𝜑 → ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}) = ∅)
571fveq2i 6834 . . . . . . 7 (♯‘𝑇) = (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩))
5842s1cld 14521 . . . . . . . 8 (𝜑 → ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶)
59 ccatlen 14492 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶) → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
602, 58, 59syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
6157, 60eqtrid 2780 . . . . . 6 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
62 s1len 14524 . . . . . . 7 (♯‘⟨“(𝐾‘{𝑋})”⟩) = 1
6362oveq2i 7366 . . . . . 6 ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + 1)
6461, 63eqtrdi 2784 . . . . 5 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + 1))
6564oveq2d 7371 . . . 4 (𝜑 → (0..^(♯‘𝑇)) = (0..^((♯‘𝑆) + 1)))
66 nn0uz 12784 . . . . . 6 0 = (ℤ‘0)
6750, 66eleqtrdi 2843 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (ℤ‘0))
68 fzosplitsn 13686 . . . . 5 ((♯‘𝑆) ∈ (ℤ‘0) → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
6967, 68syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
7065, 69eqtrd 2768 . . 3 (𝜑 → (0..^(♯‘𝑇)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
71 eqid 2733 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
72 eqid 2733 . . 3 (0g𝐺) = (0g𝐺)
73 pgpfac.4 . . . 4 (𝜑𝐺dom DProd 𝑆)
74 cats1un 14638 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ (𝐾‘{𝑋}) ∈ 𝐶) → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
752, 42, 74syl2anc 584 . . . . . . 7 (𝜑 → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
761, 75eqtrid 2780 . . . . . 6 (𝜑𝑇 = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
7776reseq1d 5934 . . . . 5 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))))
78 wrdfn 14445 . . . . . . 7 (𝑆 ∈ Word 𝐶𝑆 Fn (0..^(♯‘𝑆)))
792, 78syl 17 . . . . . 6 (𝜑𝑆 Fn (0..^(♯‘𝑆)))
80 fzonel 13583 . . . . . 6 ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))
81 fsnunres 7131 . . . . . 6 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))) → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8279, 80, 81sylancl 586 . . . . 5 (𝜑 → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8377, 82eqtrd 2768 . . . 4 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = 𝑆)
8473, 83breqtrrd 5123 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))))
85 fvex 6844 . . . . . 6 (♯‘𝑆) ∈ V
86 dprdsn 19960 . . . . . 6 (((♯‘𝑆) ∈ V ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8785, 21, 86sylancr 587 . . . . 5 (𝜑 → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8887simpld 494 . . . 4 (𝜑𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
89 wrdfn 14445 . . . . . . 7 (𝑇 ∈ Word 𝐶𝑇 Fn (0..^(♯‘𝑇)))
9043, 89syl 17 . . . . . 6 (𝜑𝑇 Fn (0..^(♯‘𝑇)))
91 ssun2 4130 . . . . . . . 8 {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9285snss 4738 . . . . . . . 8 ((♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}) ↔ {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
9391, 92mpbir 231 . . . . . . 7 (♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9493, 70eleqtrrid 2840 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ (0..^(♯‘𝑇)))
95 fnressn 7100 . . . . . 6 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ (0..^(♯‘𝑇))) → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
9690, 94, 95syl2anc 584 . . . . 5 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
971fveq1i 6832 . . . . . . . . 9 (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆))
9850nn0cnd 12454 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) ∈ ℂ)
9998addlidd 11324 . . . . . . . . . 10 (𝜑 → (0 + (♯‘𝑆)) = (♯‘𝑆))
10099fveq2d 6835 . . . . . . . . 9 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆)))
10197, 100eqtr4id 2787 . . . . . . . 8 (𝜑 → (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))))
102 1nn 12146 . . . . . . . . . . . 12 1 ∈ ℕ
10362, 102eqeltri 2829 . . . . . . . . . . 11 (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ
104 lbfzo0 13609 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)) ↔ (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ)
105103, 104mpbir 231 . . . . . . . . . 10 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))
106105a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)))
107 ccatval3 14496 . . . . . . . . 9 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶 ∧ 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))) → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
1082, 58, 106, 107syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
109 fvex 6844 . . . . . . . . 9 (𝐾‘{𝑋}) ∈ V
110 s1fv 14528 . . . . . . . . 9 ((𝐾‘{𝑋}) ∈ V → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
111109, 110mp1i 13 . . . . . . . 8 (𝜑 → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
112101, 108, 1113eqtrd 2772 . . . . . . 7 (𝜑 → (𝑇‘(♯‘𝑆)) = (𝐾‘{𝑋}))
113112opeq2d 4833 . . . . . 6 (𝜑 → ⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩ = ⟨(♯‘𝑆), (𝐾‘{𝑋})⟩)
114113sneqd 4589 . . . . 5 (𝜑 → {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩} = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11596, 114eqtrd 2768 . . . 4 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11688, 115breqtrrd 5123 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}))
117 pgpfac.g . . . 4 (𝜑𝐺 ∈ Abel)
118 dprdsubg 19948 . . . . 5 (𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))) → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
11984, 118syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
120 dprdsubg 19948 . . . . 5 (𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}) → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
121116, 120syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
12271, 117, 119, 121ablcntzd 19779 . . 3 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
123 pgpfac.i . . . 4 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12483oveq2d 7371 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = (𝐺 DProd 𝑆))
125 pgpfac.5 . . . . . . 7 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
126124, 125eqtrd 2768 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = 𝑊)
127115oveq2d 7371 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
12887simprd 495 . . . . . . 7 (𝜑 → (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋}))
129127, 128eqtrd 2768 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐾‘{𝑋}))
130126, 129ineq12d 4172 . . . . 5 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊 ∩ (𝐾‘{𝑋})))
131 incom 4160 . . . . 5 (𝑊 ∩ (𝐾‘{𝑋})) = ((𝐾‘{𝑋}) ∩ 𝑊)
132130, 131eqtrdi 2784 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = ((𝐾‘{𝑋}) ∩ 𝑊))
1334, 72subg0 19055 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
1343, 133syl 17 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
135 pgpfac.0 . . . . . 6 0 = (0g𝐻)
136134, 135eqtr4di 2786 . . . . 5 (𝜑 → (0g𝐺) = 0 )
137136sneqd 4589 . . . 4 (𝜑 → {(0g𝐺)} = { 0 })
138123, 132, 1373eqtr4d 2778 . . 3 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = {(0g𝐺)})
13948, 56, 70, 71, 72, 84, 116, 122, 138dmdprdsplit2 19970 . 2 (𝜑𝐺dom DProd 𝑇)
140 eqid 2733 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
14148, 56, 70, 140, 139dprdsplit 19972 . . . 4 (𝜑 → (𝐺 DProd 𝑇) = ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
142126, 129oveq12d 7373 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})))
143126, 119eqeltrrd 2834 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
144140lsmcom 19780 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
145117, 143, 21, 144syl3anc 1373 . . . 4 (𝜑 → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
146141, 142, 1453eqtrd 2772 . . 3 (𝜑 → (𝐺 DProd 𝑇) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
147 pgpfac.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐻))
1487subgss 19050 . . . . . 6 (𝑊 ∈ (SubGrp‘𝐻) → 𝑊 ⊆ (Base‘𝐻))
149147, 148syl 17 . . . . 5 (𝜑𝑊 ⊆ (Base‘𝐻))
150149, 13sseqtrrd 3969 . . . 4 (𝜑𝑊𝑈)
151 pgpfac.l . . . . 5 = (LSSum‘𝐻)
1524, 140, 151subglsm 19595 . . . 4 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈𝑊𝑈) → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
1533, 23, 150, 152syl3anc 1373 . . 3 (𝜑 → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
154 pgpfac.s . . 3 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
155146, 153, 1543eqtrd 2772 . 2 (𝜑 → (𝐺 DProd 𝑇) = 𝑈)
156 breq2 5099 . . . 4 (𝑠 = 𝑇 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑇))
157 oveq2 7363 . . . . 5 (𝑠 = 𝑇 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑇))
158157eqeq1d 2735 . . . 4 (𝑠 = 𝑇 → ((𝐺 DProd 𝑠) = 𝑈 ↔ (𝐺 DProd 𝑇) = 𝑈))
159156, 158anbi12d 632 . . 3 (𝑠 = 𝑇 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈) ↔ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)))
160159rspcev 3574 . 2 ((𝑇 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
16143, 139, 155, 160syl12anc 836 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930  wral 3049  wrex 3058  {crab 3397  Vcvv 3438  cun 3897  cin 3898  wss 3899  wpss 3900  c0 4284  {csn 4577  cop 4583   class class class wbr 5095  dom cdm 5621  ran crn 5622  cres 5623   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8878  0cc0 11016  1c1 11017   + caddc 11019  cn 12135  0cn0 12391  cz 12478  cuz 12742  ..^cfzo 13564  chash 14247  Word cword 14430   ++ cconcat 14487  ⟨“cs1 14513  cprime 16592  Basecbs 17130  s cress 17151  0gc0g 17353  Moorecmre 17494  mrClscmrc 17495  ACScacs 17497  Grpcgrp 18856  SubGrpcsubg 19043  Cntzccntz 19237  odcod 19446  gExcgex 19447   pGrp cpgp 19448  LSSumclsm 19556  Abelcabl 19703  CycGrpccyg 19799   DProd cdprd 19917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-seq 13919  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-0g 17355  df-gsum 17356  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-ghm 19135  df-gim 19181  df-cntz 19239  df-oppg 19268  df-od 19450  df-pgp 19452  df-lsm 19558  df-cmn 19704  df-abl 19705  df-cyg 19800  df-dprd 19919
This theorem is referenced by:  pgpfaclem2  20006
  Copyright terms: Public domain W3C validator