Proof of Theorem pgpfaclem1
| Step | Hyp | Ref
| Expression |
| 1 | | pgpfac.t |
. . 3
⊢ 𝑇 = (𝑆 ++ 〈“(𝐾‘{𝑋})”〉) |
| 2 | | pgpfac.2 |
. . 3
⊢ (𝜑 → 𝑆 ∈ Word 𝐶) |
| 3 | | pgpfac.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| 4 | | pgpfac.h |
. . . . . . . . . . 11
⊢ 𝐻 = (𝐺 ↾s 𝑈) |
| 5 | 4 | subggrp 19117 |
. . . . . . . . . 10
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 6 | 3, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ Grp) |
| 7 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 8 | 7 | subgacs 19149 |
. . . . . . . . 9
⊢ (𝐻 ∈ Grp →
(SubGrp‘𝐻) ∈
(ACS‘(Base‘𝐻))) |
| 9 | 6, 8 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (SubGrp‘𝐻) ∈
(ACS‘(Base‘𝐻))) |
| 10 | 9 | acsmred 17673 |
. . . . . . 7
⊢ (𝜑 → (SubGrp‘𝐻) ∈
(Moore‘(Base‘𝐻))) |
| 11 | | pgpfac.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 12 | 4 | subgbas 19118 |
. . . . . . . . 9
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻)) |
| 13 | 3, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 = (Base‘𝐻)) |
| 14 | 11, 13 | eleqtrd 2837 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) |
| 15 | | pgpfac.k |
. . . . . . . 8
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐻)) |
| 16 | 15 | mrcsncl 17629 |
. . . . . . 7
⊢
(((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻)) |
| 17 | 10, 14, 16 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻)) |
| 18 | 4 | subsubg 19137 |
. . . . . . 7
⊢ (𝑈 ∈ (SubGrp‘𝐺) → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈))) |
| 19 | 3, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈))) |
| 20 | 17, 19 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)) |
| 21 | 20 | simpld 494 |
. . . 4
⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) |
| 22 | 4 | oveq1i 7420 |
. . . . . . 7
⊢ (𝐻 ↾s (𝐾‘{𝑋})) = ((𝐺 ↾s 𝑈) ↾s (𝐾‘{𝑋})) |
| 23 | 20 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈) |
| 24 | | ressabs 17274 |
. . . . . . . 8
⊢ ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈) → ((𝐺 ↾s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺 ↾s (𝐾‘{𝑋}))) |
| 25 | 3, 23, 24 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ↾s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺 ↾s (𝐾‘{𝑋}))) |
| 26 | 22, 25 | eqtrid 2783 |
. . . . . 6
⊢ (𝜑 → (𝐻 ↾s (𝐾‘{𝑋})) = (𝐺 ↾s (𝐾‘{𝑋}))) |
| 27 | 7, 15 | cycsubgcyg2 19888 |
. . . . . . 7
⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐻 ↾s (𝐾‘{𝑋})) ∈ CycGrp) |
| 28 | 6, 14, 27 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐻 ↾s (𝐾‘{𝑋})) ∈ CycGrp) |
| 29 | 26, 28 | eqeltrrd 2836 |
. . . . 5
⊢ (𝜑 → (𝐺 ↾s (𝐾‘{𝑋})) ∈ CycGrp) |
| 30 | | pgpfac.p |
. . . . . . 7
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
| 31 | | pgpprm 19579 |
. . . . . . 7
⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| 32 | 30, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 33 | | subgpgp 19583 |
. . . . . . 7
⊢ ((𝑃 pGrp 𝐺 ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s (𝐾‘{𝑋}))) |
| 34 | 30, 21, 33 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s (𝐾‘{𝑋}))) |
| 35 | | brelrng 5926 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐺 ↾s (𝐾‘{𝑋})) ∈ CycGrp ∧ 𝑃 pGrp (𝐺 ↾s (𝐾‘{𝑋}))) → (𝐺 ↾s (𝐾‘{𝑋})) ∈ ran pGrp ) |
| 36 | 32, 29, 34, 35 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝐺 ↾s (𝐾‘{𝑋})) ∈ ran pGrp ) |
| 37 | 29, 36 | elind 4180 |
. . . 4
⊢ (𝜑 → (𝐺 ↾s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp
)) |
| 38 | | oveq2 7418 |
. . . . . 6
⊢ (𝑟 = (𝐾‘{𝑋}) → (𝐺 ↾s 𝑟) = (𝐺 ↾s (𝐾‘{𝑋}))) |
| 39 | 38 | eleq1d 2820 |
. . . . 5
⊢ (𝑟 = (𝐾‘{𝑋}) → ((𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔
(𝐺 ↾s
(𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp
))) |
| 40 | | pgpfac.c |
. . . . 5
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
| 41 | 39, 40 | elrab2 3679 |
. . . 4
⊢ ((𝐾‘{𝑋}) ∈ 𝐶 ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐺 ↾s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp
))) |
| 42 | 21, 37, 41 | sylanbrc 583 |
. . 3
⊢ (𝜑 → (𝐾‘{𝑋}) ∈ 𝐶) |
| 43 | 1, 2, 42 | cats1cld 14879 |
. 2
⊢ (𝜑 → 𝑇 ∈ Word 𝐶) |
| 44 | | wrdf 14541 |
. . . . 5
⊢ (𝑇 ∈ Word 𝐶 → 𝑇:(0..^(♯‘𝑇))⟶𝐶) |
| 45 | 43, 44 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑇:(0..^(♯‘𝑇))⟶𝐶) |
| 46 | 40 | ssrab3 4062 |
. . . 4
⊢ 𝐶 ⊆ (SubGrp‘𝐺) |
| 47 | | fss 6727 |
. . . 4
⊢ ((𝑇:(0..^(♯‘𝑇))⟶𝐶 ∧ 𝐶 ⊆ (SubGrp‘𝐺)) → 𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺)) |
| 48 | 45, 46, 47 | sylancl 586 |
. . 3
⊢ (𝜑 → 𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺)) |
| 49 | | lencl 14556 |
. . . . . . . 8
⊢ (𝑆 ∈ Word 𝐶 → (♯‘𝑆) ∈
ℕ0) |
| 50 | 2, 49 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑆) ∈
ℕ0) |
| 51 | 50 | nn0zd 12619 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑆) ∈
ℤ) |
| 52 | | fzosn 13757 |
. . . . . 6
⊢
((♯‘𝑆)
∈ ℤ → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)}) |
| 53 | 51, 52 | syl 17 |
. . . . 5
⊢ (𝜑 → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)}) |
| 54 | 53 | ineq2d 4200 |
. . . 4
⊢ (𝜑 → ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) =
((0..^(♯‘𝑆))
∩ {(♯‘𝑆)})) |
| 55 | | fzodisj 13715 |
. . . 4
⊢
((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ∅ |
| 56 | 54, 55 | eqtr3di 2786 |
. . 3
⊢ (𝜑 → ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}) = ∅) |
| 57 | 1 | fveq2i 6884 |
. . . . . . 7
⊢
(♯‘𝑇) =
(♯‘(𝑆 ++
〈“(𝐾‘{𝑋})”〉)) |
| 58 | 42 | s1cld 14626 |
. . . . . . . 8
⊢ (𝜑 → 〈“(𝐾‘{𝑋})”〉 ∈ Word 𝐶) |
| 59 | | ccatlen 14598 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐶 ∧ 〈“(𝐾‘{𝑋})”〉 ∈ Word 𝐶) → (♯‘(𝑆 ++ 〈“(𝐾‘{𝑋})”〉)) = ((♯‘𝑆) +
(♯‘〈“(𝐾‘{𝑋})”〉))) |
| 60 | 2, 58, 59 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝑆 ++ 〈“(𝐾‘{𝑋})”〉)) = ((♯‘𝑆) +
(♯‘〈“(𝐾‘{𝑋})”〉))) |
| 61 | 57, 60 | eqtrid 2783 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑇) = ((♯‘𝑆) +
(♯‘〈“(𝐾‘{𝑋})”〉))) |
| 62 | | s1len 14629 |
. . . . . . 7
⊢
(♯‘〈“(𝐾‘{𝑋})”〉) = 1 |
| 63 | 62 | oveq2i 7421 |
. . . . . 6
⊢
((♯‘𝑆) +
(♯‘〈“(𝐾‘{𝑋})”〉)) = ((♯‘𝑆) + 1) |
| 64 | 61, 63 | eqtrdi 2787 |
. . . . 5
⊢ (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + 1)) |
| 65 | 64 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (0..^(♯‘𝑇)) = (0..^((♯‘𝑆) + 1))) |
| 66 | | nn0uz 12899 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
| 67 | 50, 66 | eleqtrdi 2845 |
. . . . 5
⊢ (𝜑 → (♯‘𝑆) ∈
(ℤ≥‘0)) |
| 68 | | fzosplitsn 13796 |
. . . . 5
⊢
((♯‘𝑆)
∈ (ℤ≥‘0) → (0..^((♯‘𝑆) + 1)) =
((0..^(♯‘𝑆))
∪ {(♯‘𝑆)})) |
| 69 | 67, 68 | syl 17 |
. . . 4
⊢ (𝜑 → (0..^((♯‘𝑆) + 1)) =
((0..^(♯‘𝑆))
∪ {(♯‘𝑆)})) |
| 70 | 65, 69 | eqtrd 2771 |
. . 3
⊢ (𝜑 → (0..^(♯‘𝑇)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})) |
| 71 | | eqid 2736 |
. . 3
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 72 | | eqid 2736 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 73 | | pgpfac.4 |
. . . 4
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 74 | | cats1un 14744 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐶 ∧ (𝐾‘{𝑋}) ∈ 𝐶) → (𝑆 ++ 〈“(𝐾‘{𝑋})”〉) = (𝑆 ∪ {〈(♯‘𝑆), (𝐾‘{𝑋})〉})) |
| 75 | 2, 42, 74 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ++ 〈“(𝐾‘{𝑋})”〉) = (𝑆 ∪ {〈(♯‘𝑆), (𝐾‘{𝑋})〉})) |
| 76 | 1, 75 | eqtrid 2783 |
. . . . . 6
⊢ (𝜑 → 𝑇 = (𝑆 ∪ {〈(♯‘𝑆), (𝐾‘{𝑋})〉})) |
| 77 | 76 | reseq1d 5970 |
. . . . 5
⊢ (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = ((𝑆 ∪ {〈(♯‘𝑆), (𝐾‘{𝑋})〉}) ↾ (0..^(♯‘𝑆)))) |
| 78 | | wrdfn 14551 |
. . . . . . 7
⊢ (𝑆 ∈ Word 𝐶 → 𝑆 Fn (0..^(♯‘𝑆))) |
| 79 | 2, 78 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 Fn (0..^(♯‘𝑆))) |
| 80 | | fzonel 13695 |
. . . . . 6
⊢ ¬
(♯‘𝑆) ∈
(0..^(♯‘𝑆)) |
| 81 | | fsnunres 7185 |
. . . . . 6
⊢ ((𝑆 Fn (0..^(♯‘𝑆)) ∧ ¬
(♯‘𝑆) ∈
(0..^(♯‘𝑆)))
→ ((𝑆 ∪
{〈(♯‘𝑆),
(𝐾‘{𝑋})〉}) ↾ (0..^(♯‘𝑆))) = 𝑆) |
| 82 | 79, 80, 81 | sylancl 586 |
. . . . 5
⊢ (𝜑 → ((𝑆 ∪ {〈(♯‘𝑆), (𝐾‘{𝑋})〉}) ↾ (0..^(♯‘𝑆))) = 𝑆) |
| 83 | 77, 82 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = 𝑆) |
| 84 | 73, 83 | breqtrrd 5152 |
. . 3
⊢ (𝜑 → 𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆)))) |
| 85 | | fvex 6894 |
. . . . . 6
⊢
(♯‘𝑆)
∈ V |
| 86 | | dprdsn 20024 |
. . . . . 6
⊢
(((♯‘𝑆)
∈ V ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {〈(♯‘𝑆), (𝐾‘{𝑋})〉} ∧ (𝐺 DProd {〈(♯‘𝑆), (𝐾‘{𝑋})〉}) = (𝐾‘{𝑋}))) |
| 87 | 85, 21, 86 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (𝐺dom DProd {〈(♯‘𝑆), (𝐾‘{𝑋})〉} ∧ (𝐺 DProd {〈(♯‘𝑆), (𝐾‘{𝑋})〉}) = (𝐾‘{𝑋}))) |
| 88 | 87 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝐺dom DProd {〈(♯‘𝑆), (𝐾‘{𝑋})〉}) |
| 89 | | wrdfn 14551 |
. . . . . . 7
⊢ (𝑇 ∈ Word 𝐶 → 𝑇 Fn (0..^(♯‘𝑇))) |
| 90 | 43, 89 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑇 Fn (0..^(♯‘𝑇))) |
| 91 | | ssun2 4159 |
. . . . . . . 8
⊢
{(♯‘𝑆)}
⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}) |
| 92 | 85 | snss 4766 |
. . . . . . . 8
⊢
((♯‘𝑆)
∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}) ↔ {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})) |
| 93 | 91, 92 | mpbir 231 |
. . . . . . 7
⊢
(♯‘𝑆)
∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}) |
| 94 | 93, 70 | eleqtrrid 2842 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑆) ∈
(0..^(♯‘𝑇))) |
| 95 | | fnressn 7153 |
. . . . . 6
⊢ ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈
(0..^(♯‘𝑇)))
→ (𝑇 ↾
{(♯‘𝑆)}) =
{〈(♯‘𝑆),
(𝑇‘(♯‘𝑆))〉}) |
| 96 | 90, 94, 95 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {〈(♯‘𝑆), (𝑇‘(♯‘𝑆))〉}) |
| 97 | 1 | fveq1i 6882 |
. . . . . . . . 9
⊢ (𝑇‘(♯‘𝑆)) = ((𝑆 ++ 〈“(𝐾‘{𝑋})”〉)‘(♯‘𝑆)) |
| 98 | 50 | nn0cnd 12569 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑆) ∈
ℂ) |
| 99 | 98 | addlidd 11441 |
. . . . . . . . . 10
⊢ (𝜑 → (0 + (♯‘𝑆)) = (♯‘𝑆)) |
| 100 | 99 | fveq2d 6885 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑆 ++ 〈“(𝐾‘{𝑋})”〉)‘(0 +
(♯‘𝑆))) =
((𝑆 ++ 〈“(𝐾‘{𝑋})”〉)‘(♯‘𝑆))) |
| 101 | 97, 100 | eqtr4id 2790 |
. . . . . . . 8
⊢ (𝜑 → (𝑇‘(♯‘𝑆)) = ((𝑆 ++ 〈“(𝐾‘{𝑋})”〉)‘(0 +
(♯‘𝑆)))) |
| 102 | | 1nn 12256 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℕ |
| 103 | 62, 102 | eqeltri 2831 |
. . . . . . . . . . 11
⊢
(♯‘〈“(𝐾‘{𝑋})”〉) ∈
ℕ |
| 104 | | lbfzo0 13721 |
. . . . . . . . . . 11
⊢ (0 ∈
(0..^(♯‘〈“(𝐾‘{𝑋})”〉)) ↔
(♯‘〈“(𝐾‘{𝑋})”〉) ∈
ℕ) |
| 105 | 103, 104 | mpbir 231 |
. . . . . . . . . 10
⊢ 0 ∈
(0..^(♯‘〈“(𝐾‘{𝑋})”〉)) |
| 106 | 105 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
(0..^(♯‘〈“(𝐾‘{𝑋})”〉))) |
| 107 | | ccatval3 14602 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝐶 ∧ 〈“(𝐾‘{𝑋})”〉 ∈ Word 𝐶 ∧ 0 ∈
(0..^(♯‘〈“(𝐾‘{𝑋})”〉))) → ((𝑆 ++ 〈“(𝐾‘{𝑋})”〉)‘(0 +
(♯‘𝑆))) =
(〈“(𝐾‘{𝑋})”〉‘0)) |
| 108 | 2, 58, 106, 107 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 ++ 〈“(𝐾‘{𝑋})”〉)‘(0 +
(♯‘𝑆))) =
(〈“(𝐾‘{𝑋})”〉‘0)) |
| 109 | | fvex 6894 |
. . . . . . . . 9
⊢ (𝐾‘{𝑋}) ∈ V |
| 110 | | s1fv 14633 |
. . . . . . . . 9
⊢ ((𝐾‘{𝑋}) ∈ V → (〈“(𝐾‘{𝑋})”〉‘0) = (𝐾‘{𝑋})) |
| 111 | 109, 110 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → (〈“(𝐾‘{𝑋})”〉‘0) = (𝐾‘{𝑋})) |
| 112 | 101, 108,
111 | 3eqtrd 2775 |
. . . . . . 7
⊢ (𝜑 → (𝑇‘(♯‘𝑆)) = (𝐾‘{𝑋})) |
| 113 | 112 | opeq2d 4861 |
. . . . . 6
⊢ (𝜑 → 〈(♯‘𝑆), (𝑇‘(♯‘𝑆))〉 = 〈(♯‘𝑆), (𝐾‘{𝑋})〉) |
| 114 | 113 | sneqd 4618 |
. . . . 5
⊢ (𝜑 →
{〈(♯‘𝑆),
(𝑇‘(♯‘𝑆))〉} = {〈(♯‘𝑆), (𝐾‘{𝑋})〉}) |
| 115 | 96, 114 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {〈(♯‘𝑆), (𝐾‘{𝑋})〉}) |
| 116 | 88, 115 | breqtrrd 5152 |
. . 3
⊢ (𝜑 → 𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)})) |
| 117 | | pgpfac.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 118 | | dprdsubg 20012 |
. . . . 5
⊢ (𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))) → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺)) |
| 119 | 84, 118 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺)) |
| 120 | | dprdsubg 20012 |
. . . . 5
⊢ (𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}) → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺)) |
| 121 | 116, 120 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺)) |
| 122 | 71, 117, 119, 121 | ablcntzd 19843 |
. . 3
⊢ (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})))) |
| 123 | | pgpfac.i |
. . . 4
⊢ (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) |
| 124 | 83 | oveq2d 7426 |
. . . . . . 7
⊢ (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = (𝐺 DProd 𝑆)) |
| 125 | | pgpfac.5 |
. . . . . . 7
⊢ (𝜑 → (𝐺 DProd 𝑆) = 𝑊) |
| 126 | 124, 125 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = 𝑊) |
| 127 | 115 | oveq2d 7426 |
. . . . . . 7
⊢ (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐺 DProd {〈(♯‘𝑆), (𝐾‘{𝑋})〉})) |
| 128 | 87 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → (𝐺 DProd {〈(♯‘𝑆), (𝐾‘{𝑋})〉}) = (𝐾‘{𝑋})) |
| 129 | 127, 128 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐾‘{𝑋})) |
| 130 | 126, 129 | ineq12d 4201 |
. . . . 5
⊢ (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊 ∩ (𝐾‘{𝑋}))) |
| 131 | | incom 4189 |
. . . . 5
⊢ (𝑊 ∩ (𝐾‘{𝑋})) = ((𝐾‘{𝑋}) ∩ 𝑊) |
| 132 | 130, 131 | eqtrdi 2787 |
. . . 4
⊢ (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = ((𝐾‘{𝑋}) ∩ 𝑊)) |
| 133 | 4, 72 | subg0 19120 |
. . . . . . 7
⊢ (𝑈 ∈ (SubGrp‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
| 134 | 3, 133 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
| 135 | | pgpfac.0 |
. . . . . 6
⊢ 0 =
(0g‘𝐻) |
| 136 | 134, 135 | eqtr4di 2789 |
. . . . 5
⊢ (𝜑 → (0g‘𝐺) = 0 ) |
| 137 | 136 | sneqd 4618 |
. . . 4
⊢ (𝜑 →
{(0g‘𝐺)} =
{ 0
}) |
| 138 | 123, 132,
137 | 3eqtr4d 2781 |
. . 3
⊢ (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = {(0g‘𝐺)}) |
| 139 | 48, 56, 70, 71, 72, 84, 116, 122, 138 | dmdprdsplit2 20034 |
. 2
⊢ (𝜑 → 𝐺dom DProd 𝑇) |
| 140 | | eqid 2736 |
. . . . 5
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) |
| 141 | 48, 56, 70, 140, 139 | dprdsplit 20036 |
. . . 4
⊢ (𝜑 → (𝐺 DProd 𝑇) = ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})))) |
| 142 | 126, 129 | oveq12d 7428 |
. . . 4
⊢ (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊(LSSum‘𝐺)(𝐾‘{𝑋}))) |
| 143 | 126, 119 | eqeltrrd 2836 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
| 144 | 140 | lsmcom 19844 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊)) |
| 145 | 117, 143,
21, 144 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊)) |
| 146 | 141, 142,
145 | 3eqtrd 2775 |
. . 3
⊢ (𝜑 → (𝐺 DProd 𝑇) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊)) |
| 147 | | pgpfac.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐻)) |
| 148 | 7 | subgss 19115 |
. . . . . 6
⊢ (𝑊 ∈ (SubGrp‘𝐻) → 𝑊 ⊆ (Base‘𝐻)) |
| 149 | 147, 148 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑊 ⊆ (Base‘𝐻)) |
| 150 | 149, 13 | sseqtrrd 4001 |
. . . 4
⊢ (𝜑 → 𝑊 ⊆ 𝑈) |
| 151 | | pgpfac.l |
. . . . 5
⊢ ⊕ =
(LSSum‘𝐻) |
| 152 | 4, 140, 151 | subglsm 19659 |
. . . 4
⊢ ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈 ∧ 𝑊 ⊆ 𝑈) → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) ⊕ 𝑊)) |
| 153 | 3, 23, 150, 152 | syl3anc 1373 |
. . 3
⊢ (𝜑 → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) ⊕ 𝑊)) |
| 154 | | pgpfac.s |
. . 3
⊢ (𝜑 → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) |
| 155 | 146, 153,
154 | 3eqtrd 2775 |
. 2
⊢ (𝜑 → (𝐺 DProd 𝑇) = 𝑈) |
| 156 | | breq2 5128 |
. . . 4
⊢ (𝑠 = 𝑇 → (𝐺dom DProd 𝑠 ↔ 𝐺dom DProd 𝑇)) |
| 157 | | oveq2 7418 |
. . . . 5
⊢ (𝑠 = 𝑇 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑇)) |
| 158 | 157 | eqeq1d 2738 |
. . . 4
⊢ (𝑠 = 𝑇 → ((𝐺 DProd 𝑠) = 𝑈 ↔ (𝐺 DProd 𝑇) = 𝑈)) |
| 159 | 156, 158 | anbi12d 632 |
. . 3
⊢ (𝑠 = 𝑇 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈) ↔ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈))) |
| 160 | 159 | rspcev 3606 |
. 2
⊢ ((𝑇 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) |
| 161 | 43, 139, 155, 160 | syl12anc 836 |
1
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) |