MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem1 Structured version   Visualization version   GIF version

Theorem pgpfaclem1 20069
Description: Lemma for pgpfac 20072. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
pgpfac.2 (𝜑𝑆 ∈ Word 𝐶)
pgpfac.4 (𝜑𝐺dom DProd 𝑆)
pgpfac.5 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
pgpfac.t 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
Assertion
Ref Expression
pgpfaclem1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠   𝑇,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝑆(𝑡,𝑠,𝑟)   𝑇(𝑡,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem1
StepHypRef Expression
1 pgpfac.t . . 3 𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)
2 pgpfac.2 . . 3 (𝜑𝑆 ∈ Word 𝐶)
3 pgpfac.u . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝐺))
4 pgpfac.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑈)
54subggrp 19117 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
63, 5syl 17 . . . . . . . . 9 (𝜑𝐻 ∈ Grp)
7 eqid 2736 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
87subgacs 19149 . . . . . . . . 9 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
96, 8syl 17 . . . . . . . 8 (𝜑 → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
109acsmred 17673 . . . . . . 7 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
11 pgpfac.x . . . . . . . 8 (𝜑𝑋𝑈)
124subgbas 19118 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
133, 12syl 17 . . . . . . . 8 (𝜑𝑈 = (Base‘𝐻))
1411, 13eleqtrd 2837 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐻))
15 pgpfac.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐻))
1615mrcsncl 17629 . . . . . . 7 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
1710, 14, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
184subsubg 19137 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
193, 18syl 17 . . . . . 6 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈)))
2017, 19mpbid 232 . . . . 5 (𝜑 → ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈))
2120simpld 494 . . . 4 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺))
224oveq1i 7420 . . . . . . 7 (𝐻s (𝐾‘{𝑋})) = ((𝐺s 𝑈) ↾s (𝐾‘{𝑋}))
2320simprd 495 . . . . . . . 8 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
24 ressabs 17274 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈) → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
253, 23, 24syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺s 𝑈) ↾s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
2622, 25eqtrid 2783 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) = (𝐺s (𝐾‘{𝑋})))
277, 15cycsubgcyg2 19888 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
286, 14, 27syl2anc 584 . . . . . 6 (𝜑 → (𝐻s (𝐾‘{𝑋})) ∈ CycGrp)
2926, 28eqeltrrd 2836 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ CycGrp)
30 pgpfac.p . . . . . . 7 (𝜑𝑃 pGrp 𝐺)
31 pgpprm 19579 . . . . . . 7 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
3230, 31syl 17 . . . . . 6 (𝜑𝑃 ∈ ℙ)
33 subgpgp 19583 . . . . . . 7 ((𝑃 pGrp 𝐺 ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
3430, 21, 33syl2anc 584 . . . . . 6 (𝜑𝑃 pGrp (𝐺s (𝐾‘{𝑋})))
35 brelrng 5926 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐺s (𝐾‘{𝑋})) ∈ CycGrp ∧ 𝑃 pGrp (𝐺s (𝐾‘{𝑋}))) → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3632, 29, 34, 35syl3anc 1373 . . . . 5 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ ran pGrp )
3729, 36elind 4180 . . . 4 (𝜑 → (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp ))
38 oveq2 7418 . . . . . 6 (𝑟 = (𝐾‘{𝑋}) → (𝐺s 𝑟) = (𝐺s (𝐾‘{𝑋})))
3938eleq1d 2820 . . . . 5 (𝑟 = (𝐾‘{𝑋}) → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
40 pgpfac.c . . . . 5 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
4139, 40elrab2 3679 . . . 4 ((𝐾‘{𝑋}) ∈ 𝐶 ↔ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (𝐺s (𝐾‘{𝑋})) ∈ (CycGrp ∩ ran pGrp )))
4221, 37, 41sylanbrc 583 . . 3 (𝜑 → (𝐾‘{𝑋}) ∈ 𝐶)
431, 2, 42cats1cld 14879 . 2 (𝜑𝑇 ∈ Word 𝐶)
44 wrdf 14541 . . . . 5 (𝑇 ∈ Word 𝐶𝑇:(0..^(♯‘𝑇))⟶𝐶)
4543, 44syl 17 . . . 4 (𝜑𝑇:(0..^(♯‘𝑇))⟶𝐶)
4640ssrab3 4062 . . . 4 𝐶 ⊆ (SubGrp‘𝐺)
47 fss 6727 . . . 4 ((𝑇:(0..^(♯‘𝑇))⟶𝐶𝐶 ⊆ (SubGrp‘𝐺)) → 𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
4845, 46, 47sylancl 586 . . 3 (𝜑𝑇:(0..^(♯‘𝑇))⟶(SubGrp‘𝐺))
49 lencl 14556 . . . . . . . 8 (𝑆 ∈ Word 𝐶 → (♯‘𝑆) ∈ ℕ0)
502, 49syl 17 . . . . . . 7 (𝜑 → (♯‘𝑆) ∈ ℕ0)
5150nn0zd 12619 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ ℤ)
52 fzosn 13757 . . . . . 6 ((♯‘𝑆) ∈ ℤ → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5351, 52syl 17 . . . . 5 (𝜑 → ((♯‘𝑆)..^((♯‘𝑆) + 1)) = {(♯‘𝑆)})
5453ineq2d 4200 . . . 4 (𝜑 → ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}))
55 fzodisj 13715 . . . 4 ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + 1))) = ∅
5654, 55eqtr3di 2786 . . 3 (𝜑 → ((0..^(♯‘𝑆)) ∩ {(♯‘𝑆)}) = ∅)
571fveq2i 6884 . . . . . . 7 (♯‘𝑇) = (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩))
5842s1cld 14626 . . . . . . . 8 (𝜑 → ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶)
59 ccatlen 14598 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶) → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
602, 58, 59syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
6157, 60eqtrid 2783 . . . . . 6 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)))
62 s1len 14629 . . . . . . 7 (♯‘⟨“(𝐾‘{𝑋})”⟩) = 1
6362oveq2i 7421 . . . . . 6 ((♯‘𝑆) + (♯‘⟨“(𝐾‘{𝑋})”⟩)) = ((♯‘𝑆) + 1)
6461, 63eqtrdi 2787 . . . . 5 (𝜑 → (♯‘𝑇) = ((♯‘𝑆) + 1))
6564oveq2d 7426 . . . 4 (𝜑 → (0..^(♯‘𝑇)) = (0..^((♯‘𝑆) + 1)))
66 nn0uz 12899 . . . . . 6 0 = (ℤ‘0)
6750, 66eleqtrdi 2845 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (ℤ‘0))
68 fzosplitsn 13796 . . . . 5 ((♯‘𝑆) ∈ (ℤ‘0) → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
6967, 68syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑆) + 1)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
7065, 69eqtrd 2771 . . 3 (𝜑 → (0..^(♯‘𝑇)) = ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
71 eqid 2736 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
72 eqid 2736 . . 3 (0g𝐺) = (0g𝐺)
73 pgpfac.4 . . . 4 (𝜑𝐺dom DProd 𝑆)
74 cats1un 14744 . . . . . . . 8 ((𝑆 ∈ Word 𝐶 ∧ (𝐾‘{𝑋}) ∈ 𝐶) → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
752, 42, 74syl2anc 584 . . . . . . 7 (𝜑 → (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
761, 75eqtrid 2783 . . . . . 6 (𝜑𝑇 = (𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
7776reseq1d 5970 . . . . 5 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))))
78 wrdfn 14551 . . . . . . 7 (𝑆 ∈ Word 𝐶𝑆 Fn (0..^(♯‘𝑆)))
792, 78syl 17 . . . . . 6 (𝜑𝑆 Fn (0..^(♯‘𝑆)))
80 fzonel 13695 . . . . . 6 ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))
81 fsnunres 7185 . . . . . 6 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ ¬ (♯‘𝑆) ∈ (0..^(♯‘𝑆))) → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8279, 80, 81sylancl 586 . . . . 5 (𝜑 → ((𝑆 ∪ {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) ↾ (0..^(♯‘𝑆))) = 𝑆)
8377, 82eqtrd 2771 . . . 4 (𝜑 → (𝑇 ↾ (0..^(♯‘𝑆))) = 𝑆)
8473, 83breqtrrd 5152 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))))
85 fvex 6894 . . . . . 6 (♯‘𝑆) ∈ V
86 dprdsn 20024 . . . . . 6 (((♯‘𝑆) ∈ V ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8785, 21, 86sylancr 587 . . . . 5 (𝜑 → (𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩} ∧ (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋})))
8887simpld 494 . . . 4 (𝜑𝐺dom DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
89 wrdfn 14551 . . . . . . 7 (𝑇 ∈ Word 𝐶𝑇 Fn (0..^(♯‘𝑇)))
9043, 89syl 17 . . . . . 6 (𝜑𝑇 Fn (0..^(♯‘𝑇)))
91 ssun2 4159 . . . . . . . 8 {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9285snss 4766 . . . . . . . 8 ((♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}) ↔ {(♯‘𝑆)} ⊆ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)}))
9391, 92mpbir 231 . . . . . . 7 (♯‘𝑆) ∈ ((0..^(♯‘𝑆)) ∪ {(♯‘𝑆)})
9493, 70eleqtrrid 2842 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ (0..^(♯‘𝑇)))
95 fnressn 7153 . . . . . 6 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ (0..^(♯‘𝑇))) → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
9690, 94, 95syl2anc 584 . . . . 5 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩})
971fveq1i 6882 . . . . . . . . 9 (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆))
9850nn0cnd 12569 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) ∈ ℂ)
9998addlidd 11441 . . . . . . . . . 10 (𝜑 → (0 + (♯‘𝑆)) = (♯‘𝑆))
10099fveq2d 6885 . . . . . . . . 9 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(♯‘𝑆)))
10197, 100eqtr4id 2790 . . . . . . . 8 (𝜑 → (𝑇‘(♯‘𝑆)) = ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))))
102 1nn 12256 . . . . . . . . . . . 12 1 ∈ ℕ
10362, 102eqeltri 2831 . . . . . . . . . . 11 (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ
104 lbfzo0 13721 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)) ↔ (♯‘⟨“(𝐾‘{𝑋})”⟩) ∈ ℕ)
105103, 104mpbir 231 . . . . . . . . . 10 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))
106105a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩)))
107 ccatval3 14602 . . . . . . . . 9 ((𝑆 ∈ Word 𝐶 ∧ ⟨“(𝐾‘{𝑋})”⟩ ∈ Word 𝐶 ∧ 0 ∈ (0..^(♯‘⟨“(𝐾‘{𝑋})”⟩))) → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
1082, 58, 106, 107syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)‘(0 + (♯‘𝑆))) = (⟨“(𝐾‘{𝑋})”⟩‘0))
109 fvex 6894 . . . . . . . . 9 (𝐾‘{𝑋}) ∈ V
110 s1fv 14633 . . . . . . . . 9 ((𝐾‘{𝑋}) ∈ V → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
111109, 110mp1i 13 . . . . . . . 8 (𝜑 → (⟨“(𝐾‘{𝑋})”⟩‘0) = (𝐾‘{𝑋}))
112101, 108, 1113eqtrd 2775 . . . . . . 7 (𝜑 → (𝑇‘(♯‘𝑆)) = (𝐾‘{𝑋}))
113112opeq2d 4861 . . . . . 6 (𝜑 → ⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩ = ⟨(♯‘𝑆), (𝐾‘{𝑋})⟩)
114113sneqd 4618 . . . . 5 (𝜑 → {⟨(♯‘𝑆), (𝑇‘(♯‘𝑆))⟩} = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11596, 114eqtrd 2771 . . . 4 (𝜑 → (𝑇 ↾ {(♯‘𝑆)}) = {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩})
11688, 115breqtrrd 5152 . . 3 (𝜑𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}))
117 pgpfac.g . . . 4 (𝜑𝐺 ∈ Abel)
118 dprdsubg 20012 . . . . 5 (𝐺dom DProd (𝑇 ↾ (0..^(♯‘𝑆))) → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
11984, 118syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∈ (SubGrp‘𝐺))
120 dprdsubg 20012 . . . . 5 (𝐺dom DProd (𝑇 ↾ {(♯‘𝑆)}) → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
121116, 120syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) ∈ (SubGrp‘𝐺))
12271, 117, 119, 121ablcntzd 19843 . . 3 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
123 pgpfac.i . . . 4 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12483oveq2d 7426 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = (𝐺 DProd 𝑆))
125 pgpfac.5 . . . . . . 7 (𝜑 → (𝐺 DProd 𝑆) = 𝑊)
126124, 125eqtrd 2771 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) = 𝑊)
127115oveq2d 7426 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}))
12887simprd 495 . . . . . . 7 (𝜑 → (𝐺 DProd {⟨(♯‘𝑆), (𝐾‘{𝑋})⟩}) = (𝐾‘{𝑋}))
129127, 128eqtrd 2771 . . . . . 6 (𝜑 → (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)})) = (𝐾‘{𝑋}))
130126, 129ineq12d 4201 . . . . 5 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊 ∩ (𝐾‘{𝑋})))
131 incom 4189 . . . . 5 (𝑊 ∩ (𝐾‘{𝑋})) = ((𝐾‘{𝑋}) ∩ 𝑊)
132130, 131eqtrdi 2787 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = ((𝐾‘{𝑋}) ∩ 𝑊))
1334, 72subg0 19120 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
1343, 133syl 17 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
135 pgpfac.0 . . . . . 6 0 = (0g𝐻)
136134, 135eqtr4di 2789 . . . . 5 (𝜑 → (0g𝐺) = 0 )
137136sneqd 4618 . . . 4 (𝜑 → {(0g𝐺)} = { 0 })
138123, 132, 1373eqtr4d 2781 . . 3 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆)))) ∩ (𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = {(0g𝐺)})
13948, 56, 70, 71, 72, 84, 116, 122, 138dmdprdsplit2 20034 . 2 (𝜑𝐺dom DProd 𝑇)
140 eqid 2736 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
14148, 56, 70, 140, 139dprdsplit 20036 . . . 4 (𝜑 → (𝐺 DProd 𝑇) = ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))))
142126, 129oveq12d 7428 . . . 4 (𝜑 → ((𝐺 DProd (𝑇 ↾ (0..^(♯‘𝑆))))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ {(♯‘𝑆)}))) = (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})))
143126, 119eqeltrrd 2836 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
144140lsmcom 19844 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺)) → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
145117, 143, 21, 144syl3anc 1373 . . . 4 (𝜑 → (𝑊(LSSum‘𝐺)(𝐾‘{𝑋})) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
146141, 142, 1453eqtrd 2775 . . 3 (𝜑 → (𝐺 DProd 𝑇) = ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊))
147 pgpfac.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐻))
1487subgss 19115 . . . . . 6 (𝑊 ∈ (SubGrp‘𝐻) → 𝑊 ⊆ (Base‘𝐻))
149147, 148syl 17 . . . . 5 (𝜑𝑊 ⊆ (Base‘𝐻))
150149, 13sseqtrrd 4001 . . . 4 (𝜑𝑊𝑈)
151 pgpfac.l . . . . 5 = (LSSum‘𝐻)
1524, 140, 151subglsm 19659 . . . 4 ((𝑈 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝑋}) ⊆ 𝑈𝑊𝑈) → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
1533, 23, 150, 152syl3anc 1373 . . 3 (𝜑 → ((𝐾‘{𝑋})(LSSum‘𝐺)𝑊) = ((𝐾‘{𝑋}) 𝑊))
154 pgpfac.s . . 3 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
155146, 153, 1543eqtrd 2775 . 2 (𝜑 → (𝐺 DProd 𝑇) = 𝑈)
156 breq2 5128 . . . 4 (𝑠 = 𝑇 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑇))
157 oveq2 7418 . . . . 5 (𝑠 = 𝑇 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑇))
158157eqeq1d 2738 . . . 4 (𝑠 = 𝑇 → ((𝐺 DProd 𝑠) = 𝑈 ↔ (𝐺 DProd 𝑇) = 𝑈))
159156, 158anbi12d 632 . . 3 (𝑠 = 𝑇 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈) ↔ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)))
160159rspcev 3606 . 2 ((𝑇 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝑈)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
16143, 139, 155, 160syl12anc 836 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cun 3929  cin 3930  wss 3931  wpss 3932  c0 4313  {csn 4606  cop 4612   class class class wbr 5124  dom cdm 5659  ran crn 5660  cres 5661   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  0cc0 11134  1c1 11135   + caddc 11137  cn 12245  0cn0 12506  cz 12593  cuz 12857  ..^cfzo 13676  chash 14353  Word cword 14536   ++ cconcat 14593  ⟨“cs1 14618  cprime 16695  Basecbs 17233  s cress 17256  0gc0g 17458  Moorecmre 17599  mrClscmrc 17600  ACScacs 17602  Grpcgrp 18921  SubGrpcsubg 19108  Cntzccntz 19303  odcod 19510  gExcgex 19511   pGrp cpgp 19512  LSSumclsm 19620  Abelcabl 19767  CycGrpccyg 19863   DProd cdprd 19981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-od 19514  df-pgp 19516  df-lsm 19622  df-cmn 19768  df-abl 19769  df-cyg 19864  df-dprd 19983
This theorem is referenced by:  pgpfaclem2  20070
  Copyright terms: Public domain W3C validator