| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brelrn | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| brelrn.1 | ⊢ 𝐴 ∈ V |
| brelrn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brelrn | ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brelrn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | brelrn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brelrng 5876 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 ran crn 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-cnv 5619 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: opelrn 5878 dfco2a 6188 cores 6191 dffun9 6505 funcnv 6545 rntpos 8164 rnttrcl 9607 aceq3lem 10006 axdclem 10405 axdclem2 10406 cotr2g 14878 shftfval 14972 psdmrn 18474 metustexhalf 24466 itg1addlem4 25622 |
| Copyright terms: Public domain | W3C validator |