Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brelrn | Structured version Visualization version GIF version |
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
brelrn.1 | ⊢ 𝐴 ∈ V |
brelrn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brelrn | ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brelrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brelrn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brelrng 5839 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | |
4 | 1, 2, 3 | mp3an12 1449 | 1 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: opelrn 5841 dfco2a 6139 cores 6142 dffun9 6447 funcnv 6487 rntpos 8026 aceq3lem 9807 axdclem 10206 axdclem2 10207 cotr2g 14615 shftfval 14709 psdmrn 18206 metustexhalf 23618 itg1addlem4 24768 itg1addlem4OLD 24769 rnttrcl 33708 |
Copyright terms: Public domain | W3C validator |