| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brelrn | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| brelrn.1 | ⊢ 𝐴 ∈ V |
| brelrn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brelrn | ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brelrn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | brelrn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brelrng 5918 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | |
| 4 | 1, 2, 3 | mp3an12 1452 | 1 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3457 class class class wbr 5116 ran crn 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-cnv 5659 df-dm 5661 df-rn 5662 |
| This theorem is referenced by: opelrn 5920 dfco2a 6232 cores 6235 dffun9 6561 funcnv 6601 rntpos 8232 rnttrcl 9728 aceq3lem 10126 axdclem 10525 axdclem2 10526 cotr2g 14982 shftfval 15076 psdmrn 18568 metustexhalf 24480 itg1addlem4 25637 |
| Copyright terms: Public domain | W3C validator |