![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brelrn | Structured version Visualization version GIF version |
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
brelrn.1 | ⊢ 𝐴 ∈ V |
brelrn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brelrn | ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brelrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brelrn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brelrng 5955 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | |
4 | 1, 2, 3 | mp3an12 1450 | 1 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 ran crn 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: opelrn 5957 dfco2a 6268 cores 6271 dffun9 6597 funcnv 6637 rntpos 8263 rnttrcl 9760 aceq3lem 10158 axdclem 10557 axdclem2 10558 cotr2g 15012 shftfval 15106 psdmrn 18631 metustexhalf 24585 itg1addlem4 25748 itg1addlem4OLD 25749 |
Copyright terms: Public domain | W3C validator |