MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brelrn Structured version   Visualization version   GIF version

Theorem brelrn 5967
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
Hypotheses
Ref Expression
brelrn.1 𝐴 ∈ V
brelrn.2 𝐵 ∈ V
Assertion
Ref Expression
brelrn (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)

Proof of Theorem brelrn
StepHypRef Expression
1 brelrn.1 . 2 𝐴 ∈ V
2 brelrn.2 . 2 𝐵 ∈ V
3 brelrng 5966 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
41, 2, 3mp3an12 1451 1 (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488   class class class wbr 5166  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  opelrn  5968  dfco2a  6277  cores  6280  dffun9  6607  funcnv  6647  rntpos  8280  rnttrcl  9791  aceq3lem  10189  axdclem  10588  axdclem2  10589  cotr2g  15025  shftfval  15119  psdmrn  18643  metustexhalf  24590  itg1addlem4  25753  itg1addlem4OLD  25754
  Copyright terms: Public domain W3C validator