MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brelrn Structured version   Visualization version   GIF version

Theorem brelrn 5953
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
Hypotheses
Ref Expression
brelrn.1 𝐴 ∈ V
brelrn.2 𝐵 ∈ V
Assertion
Ref Expression
brelrn (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)

Proof of Theorem brelrn
StepHypRef Expression
1 brelrn.1 . 2 𝐴 ∈ V
2 brelrn.2 . 2 𝐵 ∈ V
3 brelrng 5952 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
41, 2, 3mp3an12 1453 1 (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3480   class class class wbr 5143  ran crn 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-cnv 5693  df-dm 5695  df-rn 5696
This theorem is referenced by:  opelrn  5954  dfco2a  6266  cores  6269  dffun9  6595  funcnv  6635  rntpos  8264  rnttrcl  9762  aceq3lem  10160  axdclem  10559  axdclem2  10560  cotr2g  15015  shftfval  15109  psdmrn  18618  metustexhalf  24569  itg1addlem4  25734
  Copyright terms: Public domain W3C validator