![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brelrn | Structured version Visualization version GIF version |
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
brelrn.1 | ⊢ 𝐴 ∈ V |
brelrn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brelrn | ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brelrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brelrn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brelrng 5966 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | |
4 | 1, 2, 3 | mp3an12 1451 | 1 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: opelrn 5968 dfco2a 6277 cores 6280 dffun9 6607 funcnv 6647 rntpos 8280 rnttrcl 9791 aceq3lem 10189 axdclem 10588 axdclem2 10589 cotr2g 15025 shftfval 15119 psdmrn 18643 metustexhalf 24590 itg1addlem4 25753 itg1addlem4OLD 25754 |
Copyright terms: Public domain | W3C validator |