Proof of Theorem cgrextend
| Step | Hyp | Ref
| Expression |
| 1 | | opeq1 4855 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐵〉 = 〈𝐵, 𝐵〉) |
| 2 | 1 | breq1d 5135 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ↔ 〈𝐵, 𝐵〉Cgr〈𝐷, 𝐸〉)) |
| 3 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 = 𝐵 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ↔ 〈𝐵, 𝐵〉Cgr〈𝐷, 𝐸〉)) |
| 4 | | simp1 1136 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
| 5 | | simp22 1207 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
| 6 | | simp31 1209 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
| 7 | | simp32 1210 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁)) |
| 8 | | cgrid2 35945 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (〈𝐵, 𝐵〉Cgr〈𝐷, 𝐸〉 → 𝐷 = 𝐸)) |
| 9 | 4, 5, 6, 7, 8 | syl13anc 1373 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐵, 𝐵〉Cgr〈𝐷, 𝐸〉 → 𝐷 = 𝐸)) |
| 10 | 9 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 = 𝐵 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → (〈𝐵, 𝐵〉Cgr〈𝐷, 𝐸〉 → 𝐷 = 𝐸)) |
| 11 | 3, 10 | sylbid 240 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 → 𝐷 = 𝐸)) |
| 12 | | opeq1 4855 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| 13 | | opeq1 4855 |
. . . . . . . . 9
⊢ (𝐷 = 𝐸 → 〈𝐷, 𝐹〉 = 〈𝐸, 𝐹〉) |
| 14 | 12, 13 | breqan12d 5141 |
. . . . . . . 8
⊢ ((𝐴 = 𝐵 ∧ 𝐷 = 𝐸) → (〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉 ↔ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) |
| 15 | 14 | exbiri 810 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝐷 = 𝐸 → (〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉 → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉))) |
| 16 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → (𝐷 = 𝐸 → (〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉 → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉))) |
| 17 | 11, 16 | syld 47 |
. . . . 5
⊢ ((𝐴 = 𝐵 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 → (〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉 → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉))) |
| 18 | 17 | impd 410 |
. . . 4
⊢ ((𝐴 = 𝐵 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → ((〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |
| 19 | 18 | adantld 490 |
. . 3
⊢ ((𝐴 = 𝐵 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |
| 20 | 19 | ex 412 |
. 2
⊢ (𝐴 = 𝐵 → ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉))) |
| 21 | | simpl1 1191 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 𝑁 ∈ ℕ) |
| 22 | | simpl21 1251 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 𝐴 ∈ (𝔼‘𝑁)) |
| 23 | | simpl22 1252 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 𝐵 ∈ (𝔼‘𝑁)) |
| 24 | 21, 22, 23 | 3jca 1128 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) |
| 25 | | simpl23 1253 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 𝐶 ∈ (𝔼‘𝑁)) |
| 26 | | simpl31 1254 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 𝐷 ∈ (𝔼‘𝑁)) |
| 27 | 25, 22, 26 | 3jca 1128 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) |
| 28 | | simpl32 1255 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 𝐸 ∈ (𝔼‘𝑁)) |
| 29 | | simpl33 1256 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 𝐹 ∈ (𝔼‘𝑁)) |
| 30 | 28, 29, 26 | 3jca 1128 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) |
| 31 | 24, 27, 30 | 3jca 1128 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) |
| 32 | | simprrl 780 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉)) |
| 33 | | simprrr 781 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) |
| 34 | | cgrtriv 35944 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐴〉Cgr〈𝐷, 𝐷〉) |
| 35 | 21, 22, 26, 34 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 〈𝐴, 𝐴〉Cgr〈𝐷, 𝐷〉) |
| 36 | 33 | simpld 494 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) |
| 37 | | cgrcomlr 35940 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐸, 𝐷〉)) |
| 38 | 21, 22, 23, 26, 28, 37 | syl122anc 1380 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐸, 𝐷〉)) |
| 39 | 36, 38 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 〈𝐵, 𝐴〉Cgr〈𝐸, 𝐷〉) |
| 40 | 35, 39 | jca 511 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (〈𝐴, 𝐴〉Cgr〈𝐷, 𝐷〉 ∧ 〈𝐵, 𝐴〉Cgr〈𝐸, 𝐷〉)) |
| 41 | | brofs 35947 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐴〉〉 OuterFiveSeg 〈〈𝐷, 𝐸〉, 〈𝐹, 𝐷〉〉 ↔ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) ∧ (〈𝐴, 𝐴〉Cgr〈𝐷, 𝐷〉 ∧ 〈𝐵, 𝐴〉Cgr〈𝐸, 𝐷〉)))) |
| 42 | 21, 22, 23, 25, 22, 26, 28, 29, 26, 41 | syl333anc 1403 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐴〉〉 OuterFiveSeg 〈〈𝐷, 𝐸〉, 〈𝐹, 𝐷〉〉 ↔ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) ∧ (〈𝐴, 𝐴〉Cgr〈𝐷, 𝐷〉 ∧ 〈𝐵, 𝐴〉Cgr〈𝐸, 𝐷〉)))) |
| 43 | 32, 33, 40, 42 | mpbir3and 1342 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐴〉〉 OuterFiveSeg 〈〈𝐷, 𝐸〉, 〈𝐹, 𝐷〉〉) |
| 44 | | simprl 770 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 𝐴 ≠ 𝐵) |
| 45 | 43, 44 | jca 511 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐴〉〉 OuterFiveSeg 〈〈𝐷, 𝐸〉, 〈𝐹, 𝐷〉〉 ∧ 𝐴 ≠ 𝐵)) |
| 46 | | 5segofs 35948 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((〈〈𝐴, 𝐵〉, 〈𝐶, 𝐴〉〉 OuterFiveSeg 〈〈𝐷, 𝐸〉, 〈𝐹, 𝐷〉〉 ∧ 𝐴 ≠ 𝐵) → 〈𝐶, 𝐴〉Cgr〈𝐹, 𝐷〉)) |
| 47 | 31, 45, 46 | sylc 65 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 〈𝐶, 𝐴〉Cgr〈𝐹, 𝐷〉) |
| 48 | | cgrcomlr 35940 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐶, 𝐴〉Cgr〈𝐹, 𝐷〉 ↔ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |
| 49 | 21, 25, 22, 29, 26, 48 | syl122anc 1380 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → (〈𝐶, 𝐴〉Cgr〈𝐹, 𝐷〉 ↔ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |
| 50 | 47, 49 | mpbid 232 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)))) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) |
| 51 | 50 | exp32 420 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (𝐴 ≠ 𝐵 → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉))) |
| 52 | 51 | com12 32 |
. 2
⊢ (𝐴 ≠ 𝐵 → ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉))) |
| 53 | 20, 52 | pm2.61ine 3014 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |