MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe Structured version   Visualization version   GIF version

Theorem fpwwe 10638
Description: Given any function 𝐹 from the powerset of 𝐴 to 𝐴, canth2 9127 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset 𝑋, (𝑊𝑋)⟩ which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 10022. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
fpwwe.2 (𝜑𝐴𝑉)
fpwwe.3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
fpwwe.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe (𝜑 → ((𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Distinct variable groups:   𝑥,𝑟,𝐴   𝑦,𝑟,𝐹,𝑥   𝜑,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑋,𝑟,𝑥,𝑦   𝑌,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑟)

Proof of Theorem fpwwe
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7405 . . . . . 6 (𝑌(𝐹 ∘ 1st )𝑅) = ((𝐹 ∘ 1st )‘⟨𝑌, 𝑅⟩)
2 fo1st 7989 . . . . . . . 8 1st :V–onto→V
3 fofn 6798 . . . . . . . 8 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . . . . . 7 1st Fn V
5 opex 5455 . . . . . . 7 𝑌, 𝑅⟩ ∈ V
6 fvco2 6979 . . . . . . 7 ((1st Fn V ∧ ⟨𝑌, 𝑅⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝑌, 𝑅⟩) = (𝐹‘(1st ‘⟨𝑌, 𝑅⟩)))
74, 5, 6mp2an 689 . . . . . 6 ((𝐹 ∘ 1st )‘⟨𝑌, 𝑅⟩) = (𝐹‘(1st ‘⟨𝑌, 𝑅⟩))
81, 7eqtri 2752 . . . . 5 (𝑌(𝐹 ∘ 1st )𝑅) = (𝐹‘(1st ‘⟨𝑌, 𝑅⟩))
9 fpwwe.1 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
109bropaex12 5758 . . . . . . 7 (𝑌𝑊𝑅 → (𝑌 ∈ V ∧ 𝑅 ∈ V))
11 op1stg 7981 . . . . . . 7 ((𝑌 ∈ V ∧ 𝑅 ∈ V) → (1st ‘⟨𝑌, 𝑅⟩) = 𝑌)
1210, 11syl 17 . . . . . 6 (𝑌𝑊𝑅 → (1st ‘⟨𝑌, 𝑅⟩) = 𝑌)
1312fveq2d 6886 . . . . 5 (𝑌𝑊𝑅 → (𝐹‘(1st ‘⟨𝑌, 𝑅⟩)) = (𝐹𝑌))
148, 13eqtrid 2776 . . . 4 (𝑌𝑊𝑅 → (𝑌(𝐹 ∘ 1st )𝑅) = (𝐹𝑌))
1514eleq1d 2810 . . 3 (𝑌𝑊𝑅 → ((𝑌(𝐹 ∘ 1st )𝑅) ∈ 𝑌 ↔ (𝐹𝑌) ∈ 𝑌))
1615pm5.32i 574 . 2 ((𝑌𝑊𝑅 ∧ (𝑌(𝐹 ∘ 1st )𝑅) ∈ 𝑌) ↔ (𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌))
17 vex 3470 . . . . . . . . . . 11 𝑟 ∈ V
1817cnvex 7910 . . . . . . . . . 10 𝑟 ∈ V
1918imaex 7901 . . . . . . . . 9 (𝑟 “ {𝑦}) ∈ V
20 vex 3470 . . . . . . . . . . . 12 𝑢 ∈ V
2117inex1 5308 . . . . . . . . . . . 12 (𝑟 ∩ (𝑢 × 𝑢)) ∈ V
2220, 21opco1i 8106 . . . . . . . . . . 11 (𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = (𝐹𝑢)
23 fveq2 6882 . . . . . . . . . . 11 (𝑢 = (𝑟 “ {𝑦}) → (𝐹𝑢) = (𝐹‘(𝑟 “ {𝑦})))
2422, 23eqtrid 2776 . . . . . . . . . 10 (𝑢 = (𝑟 “ {𝑦}) → (𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = (𝐹‘(𝑟 “ {𝑦})))
2524eqeq1d 2726 . . . . . . . . 9 (𝑢 = (𝑟 “ {𝑦}) → ((𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝐹‘(𝑟 “ {𝑦})) = 𝑦))
2619, 25sbcie 3813 . . . . . . . 8 ([(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝐹‘(𝑟 “ {𝑦})) = 𝑦)
2726ralbii 3085 . . . . . . 7 (∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)
2827anbi2i 622 . . . . . 6 ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦) ↔ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))
2928anbi2i 622 . . . . 5 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)))
3029opabbii 5206 . . . 4 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
319, 30eqtr4i 2755 . . 3 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
32 fpwwe.2 . . 3 (𝜑𝐴𝑉)
33 vex 3470 . . . . 5 𝑥 ∈ V
3433, 17opco1i 8106 . . . 4 (𝑥(𝐹 ∘ 1st )𝑟) = (𝐹𝑥)
35 simp1 1133 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥𝐴)
36 velpw 4600 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
3735, 36sylibr 233 . . . . . 6 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ 𝒫 𝐴)
38 19.8a 2166 . . . . . . . 8 (𝑟 We 𝑥 → ∃𝑟 𝑟 We 𝑥)
39383ad2ant3 1132 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → ∃𝑟 𝑟 We 𝑥)
40 ween 10027 . . . . . . 7 (𝑥 ∈ dom card ↔ ∃𝑟 𝑟 We 𝑥)
4139, 40sylibr 233 . . . . . 6 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ dom card)
4237, 41elind 4187 . . . . 5 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ (𝒫 𝐴 ∩ dom card))
43 fpwwe.3 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
4442, 43sylan2 592 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝐹𝑥) ∈ 𝐴)
4534, 44eqeltrid 2829 . . 3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥(𝐹 ∘ 1st )𝑟) ∈ 𝐴)
46 fpwwe.4 . . 3 𝑋 = dom 𝑊
4731, 32, 45, 46fpwwe2 10635 . 2 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌(𝐹 ∘ 1st )𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
4816, 47bitr3id 285 1 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wral 3053  Vcvv 3466  [wsbc 3770  cin 3940  wss 3941  𝒫 cpw 4595  {csn 4621  cop 4627   cuni 4900   class class class wbr 5139  {copab 5201   We wwe 5621   × cxp 5665  ccnv 5666  dom cdm 5667  cima 5670  ccom 5671   Fn wfn 6529  ontowfo 6532  cfv 6534  (class class class)co 7402  1st c1st 7967  cardccrd 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-en 8937  df-oi 9502  df-card 9931
This theorem is referenced by:  canth4  10639  canthnumlem  10640  canthp1lem2  10645
  Copyright terms: Public domain W3C validator