MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe Structured version   Visualization version   GIF version

Theorem fpwwe 10582
Description: Given any function 𝐹 from the powerset of 𝐴 to 𝐴, canth2 9074 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset 𝑋, (𝑊𝑋)⟩ which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 9966. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
fpwwe.2 (𝜑𝐴𝑉)
fpwwe.3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
fpwwe.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe (𝜑 → ((𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Distinct variable groups:   𝑥,𝑟,𝐴   𝑦,𝑟,𝐹,𝑥   𝜑,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑋,𝑟,𝑥,𝑦   𝑌,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑟)

Proof of Theorem fpwwe
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7360 . . . . . 6 (𝑌(𝐹 ∘ 1st )𝑅) = ((𝐹 ∘ 1st )‘⟨𝑌, 𝑅⟩)
2 fo1st 7941 . . . . . . . 8 1st :V–onto→V
3 fofn 6758 . . . . . . . 8 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . . . . . 7 1st Fn V
5 opex 5421 . . . . . . 7 𝑌, 𝑅⟩ ∈ V
6 fvco2 6938 . . . . . . 7 ((1st Fn V ∧ ⟨𝑌, 𝑅⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝑌, 𝑅⟩) = (𝐹‘(1st ‘⟨𝑌, 𝑅⟩)))
74, 5, 6mp2an 690 . . . . . 6 ((𝐹 ∘ 1st )‘⟨𝑌, 𝑅⟩) = (𝐹‘(1st ‘⟨𝑌, 𝑅⟩))
81, 7eqtri 2764 . . . . 5 (𝑌(𝐹 ∘ 1st )𝑅) = (𝐹‘(1st ‘⟨𝑌, 𝑅⟩))
9 fpwwe.1 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
109bropaex12 5723 . . . . . . 7 (𝑌𝑊𝑅 → (𝑌 ∈ V ∧ 𝑅 ∈ V))
11 op1stg 7933 . . . . . . 7 ((𝑌 ∈ V ∧ 𝑅 ∈ V) → (1st ‘⟨𝑌, 𝑅⟩) = 𝑌)
1210, 11syl 17 . . . . . 6 (𝑌𝑊𝑅 → (1st ‘⟨𝑌, 𝑅⟩) = 𝑌)
1312fveq2d 6846 . . . . 5 (𝑌𝑊𝑅 → (𝐹‘(1st ‘⟨𝑌, 𝑅⟩)) = (𝐹𝑌))
148, 13eqtrid 2788 . . . 4 (𝑌𝑊𝑅 → (𝑌(𝐹 ∘ 1st )𝑅) = (𝐹𝑌))
1514eleq1d 2822 . . 3 (𝑌𝑊𝑅 → ((𝑌(𝐹 ∘ 1st )𝑅) ∈ 𝑌 ↔ (𝐹𝑌) ∈ 𝑌))
1615pm5.32i 575 . 2 ((𝑌𝑊𝑅 ∧ (𝑌(𝐹 ∘ 1st )𝑅) ∈ 𝑌) ↔ (𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌))
17 vex 3449 . . . . . . . . . . 11 𝑟 ∈ V
1817cnvex 7862 . . . . . . . . . 10 𝑟 ∈ V
1918imaex 7853 . . . . . . . . 9 (𝑟 “ {𝑦}) ∈ V
20 vex 3449 . . . . . . . . . . . 12 𝑢 ∈ V
2117inex1 5274 . . . . . . . . . . . 12 (𝑟 ∩ (𝑢 × 𝑢)) ∈ V
2220, 21opco1i 8057 . . . . . . . . . . 11 (𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = (𝐹𝑢)
23 fveq2 6842 . . . . . . . . . . 11 (𝑢 = (𝑟 “ {𝑦}) → (𝐹𝑢) = (𝐹‘(𝑟 “ {𝑦})))
2422, 23eqtrid 2788 . . . . . . . . . 10 (𝑢 = (𝑟 “ {𝑦}) → (𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = (𝐹‘(𝑟 “ {𝑦})))
2524eqeq1d 2738 . . . . . . . . 9 (𝑢 = (𝑟 “ {𝑦}) → ((𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝐹‘(𝑟 “ {𝑦})) = 𝑦))
2619, 25sbcie 3782 . . . . . . . 8 ([(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝐹‘(𝑟 “ {𝑦})) = 𝑦)
2726ralbii 3096 . . . . . . 7 (∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)
2827anbi2i 623 . . . . . 6 ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦) ↔ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))
2928anbi2i 623 . . . . 5 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)))
3029opabbii 5172 . . . 4 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
319, 30eqtr4i 2767 . . 3 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
32 fpwwe.2 . . 3 (𝜑𝐴𝑉)
33 vex 3449 . . . . 5 𝑥 ∈ V
3433, 17opco1i 8057 . . . 4 (𝑥(𝐹 ∘ 1st )𝑟) = (𝐹𝑥)
35 simp1 1136 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥𝐴)
36 velpw 4565 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
3735, 36sylibr 233 . . . . . 6 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ 𝒫 𝐴)
38 19.8a 2174 . . . . . . . 8 (𝑟 We 𝑥 → ∃𝑟 𝑟 We 𝑥)
39383ad2ant3 1135 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → ∃𝑟 𝑟 We 𝑥)
40 ween 9971 . . . . . . 7 (𝑥 ∈ dom card ↔ ∃𝑟 𝑟 We 𝑥)
4139, 40sylibr 233 . . . . . 6 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ dom card)
4237, 41elind 4154 . . . . 5 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ (𝒫 𝐴 ∩ dom card))
43 fpwwe.3 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
4442, 43sylan2 593 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝐹𝑥) ∈ 𝐴)
4534, 44eqeltrid 2842 . . 3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥(𝐹 ∘ 1st )𝑟) ∈ 𝐴)
46 fpwwe.4 . . 3 𝑋 = dom 𝑊
4731, 32, 45, 46fpwwe2 10579 . 2 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌(𝐹 ∘ 1st )𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
4816, 47bitr3id 284 1 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3064  Vcvv 3445  [wsbc 3739  cin 3909  wss 3910  𝒫 cpw 4560  {csn 4586  cop 4592   cuni 4865   class class class wbr 5105  {copab 5167   We wwe 5587   × cxp 5631  ccnv 5632  dom cdm 5633  cima 5636  ccom 5637   Fn wfn 6491  ontowfo 6494  cfv 6496  (class class class)co 7357  1st c1st 7919  cardccrd 9871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-en 8884  df-oi 9446  df-card 9875
This theorem is referenced by:  canth4  10583  canthnumlem  10584  canthp1lem2  10589
  Copyright terms: Public domain W3C validator