MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe Structured version   Visualization version   GIF version

Theorem fpwwe 10537
Description: Given any function 𝐹 from the powerset of 𝐴 to 𝐴, canth2 9043 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset 𝑋, (𝑊𝑋)⟩ which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 9921. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
fpwwe.2 (𝜑𝐴𝑉)
fpwwe.3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
fpwwe.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe (𝜑 → ((𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Distinct variable groups:   𝑥,𝑟,𝐴   𝑦,𝑟,𝐹,𝑥   𝜑,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑋,𝑟,𝑥,𝑦   𝑌,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑟)

Proof of Theorem fpwwe
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7349 . . . . . 6 (𝑌(𝐹 ∘ 1st )𝑅) = ((𝐹 ∘ 1st )‘⟨𝑌, 𝑅⟩)
2 fo1st 7941 . . . . . . . 8 1st :V–onto→V
3 fofn 6737 . . . . . . . 8 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . . . . . 7 1st Fn V
5 opex 5404 . . . . . . 7 𝑌, 𝑅⟩ ∈ V
6 fvco2 6919 . . . . . . 7 ((1st Fn V ∧ ⟨𝑌, 𝑅⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝑌, 𝑅⟩) = (𝐹‘(1st ‘⟨𝑌, 𝑅⟩)))
74, 5, 6mp2an 692 . . . . . 6 ((𝐹 ∘ 1st )‘⟨𝑌, 𝑅⟩) = (𝐹‘(1st ‘⟨𝑌, 𝑅⟩))
81, 7eqtri 2754 . . . . 5 (𝑌(𝐹 ∘ 1st )𝑅) = (𝐹‘(1st ‘⟨𝑌, 𝑅⟩))
9 fpwwe.1 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
109bropaex12 5707 . . . . . . 7 (𝑌𝑊𝑅 → (𝑌 ∈ V ∧ 𝑅 ∈ V))
11 op1stg 7933 . . . . . . 7 ((𝑌 ∈ V ∧ 𝑅 ∈ V) → (1st ‘⟨𝑌, 𝑅⟩) = 𝑌)
1210, 11syl 17 . . . . . 6 (𝑌𝑊𝑅 → (1st ‘⟨𝑌, 𝑅⟩) = 𝑌)
1312fveq2d 6826 . . . . 5 (𝑌𝑊𝑅 → (𝐹‘(1st ‘⟨𝑌, 𝑅⟩)) = (𝐹𝑌))
148, 13eqtrid 2778 . . . 4 (𝑌𝑊𝑅 → (𝑌(𝐹 ∘ 1st )𝑅) = (𝐹𝑌))
1514eleq1d 2816 . . 3 (𝑌𝑊𝑅 → ((𝑌(𝐹 ∘ 1st )𝑅) ∈ 𝑌 ↔ (𝐹𝑌) ∈ 𝑌))
1615pm5.32i 574 . 2 ((𝑌𝑊𝑅 ∧ (𝑌(𝐹 ∘ 1st )𝑅) ∈ 𝑌) ↔ (𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌))
17 vex 3440 . . . . . . . . . . 11 𝑟 ∈ V
1817cnvex 7855 . . . . . . . . . 10 𝑟 ∈ V
1918imaex 7844 . . . . . . . . 9 (𝑟 “ {𝑦}) ∈ V
20 vex 3440 . . . . . . . . . . . 12 𝑢 ∈ V
2117inex1 5255 . . . . . . . . . . . 12 (𝑟 ∩ (𝑢 × 𝑢)) ∈ V
2220, 21opco1i 8055 . . . . . . . . . . 11 (𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = (𝐹𝑢)
23 fveq2 6822 . . . . . . . . . . 11 (𝑢 = (𝑟 “ {𝑦}) → (𝐹𝑢) = (𝐹‘(𝑟 “ {𝑦})))
2422, 23eqtrid 2778 . . . . . . . . . 10 (𝑢 = (𝑟 “ {𝑦}) → (𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = (𝐹‘(𝑟 “ {𝑦})))
2524eqeq1d 2733 . . . . . . . . 9 (𝑢 = (𝑟 “ {𝑦}) → ((𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝐹‘(𝑟 “ {𝑦})) = 𝑦))
2619, 25sbcie 3783 . . . . . . . 8 ([(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝐹‘(𝑟 “ {𝑦})) = 𝑦)
2726ralbii 3078 . . . . . . 7 (∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)
2827anbi2i 623 . . . . . 6 ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦) ↔ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))
2928anbi2i 623 . . . . 5 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)))
3029opabbii 5158 . . . 4 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
319, 30eqtr4i 2757 . . 3 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢(𝐹 ∘ 1st )(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
32 fpwwe.2 . . 3 (𝜑𝐴𝑉)
33 vex 3440 . . . . 5 𝑥 ∈ V
3433, 17opco1i 8055 . . . 4 (𝑥(𝐹 ∘ 1st )𝑟) = (𝐹𝑥)
35 simp1 1136 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥𝐴)
36 velpw 4555 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
3735, 36sylibr 234 . . . . . 6 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ 𝒫 𝐴)
38 19.8a 2184 . . . . . . . 8 (𝑟 We 𝑥 → ∃𝑟 𝑟 We 𝑥)
39383ad2ant3 1135 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → ∃𝑟 𝑟 We 𝑥)
40 ween 9926 . . . . . . 7 (𝑥 ∈ dom card ↔ ∃𝑟 𝑟 We 𝑥)
4139, 40sylibr 234 . . . . . 6 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ dom card)
4237, 41elind 4150 . . . . 5 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ (𝒫 𝐴 ∩ dom card))
43 fpwwe.3 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
4442, 43sylan2 593 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝐹𝑥) ∈ 𝐴)
4534, 44eqeltrid 2835 . . 3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥(𝐹 ∘ 1st )𝑟) ∈ 𝐴)
46 fpwwe.4 . . 3 𝑋 = dom 𝑊
4731, 32, 45, 46fpwwe2 10534 . 2 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌(𝐹 ∘ 1st )𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
4816, 47bitr3id 285 1 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  [wsbc 3741  cin 3901  wss 3902  𝒫 cpw 4550  {csn 4576  cop 4582   cuni 4859   class class class wbr 5091  {copab 5153   We wwe 5568   × cxp 5614  ccnv 5615  dom cdm 5616  cima 5619  ccom 5620   Fn wfn 6476  ontowfo 6479  cfv 6481  (class class class)co 7346  1st c1st 7919  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-en 8870  df-oi 9396  df-card 9832
This theorem is referenced by:  canth4  10538  canthnumlem  10539  canthp1lem2  10544
  Copyright terms: Public domain W3C validator