MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe Structured version   Visualization version   GIF version

Theorem fpwwe 10637
Description: Given any function š¹ from the powerset of š“ to š“, canth2 9126 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset āŸØš‘‹, (š‘Šā€˜š‘‹)āŸ© which "agrees" with š¹ in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 10021. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe.1 š‘Š = {āŸØš‘„, š‘ŸāŸ© āˆ£ ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„)) āˆ§ (š‘Ÿ We š‘„ āˆ§ āˆ€š‘¦ āˆˆ š‘„ (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})) = š‘¦))}
fpwwe.2 (šœ‘ ā†’ š“ āˆˆ š‘‰)
fpwwe.3 ((šœ‘ āˆ§ š‘„ āˆˆ (š’« š“ āˆ© dom card)) ā†’ (š¹ā€˜š‘„) āˆˆ š“)
fpwwe.4 š‘‹ = āˆŖ dom š‘Š
Assertion
Ref Expression
fpwwe (šœ‘ ā†’ ((š‘Œš‘Šš‘… āˆ§ (š¹ā€˜š‘Œ) āˆˆ š‘Œ) ā†” (š‘Œ = š‘‹ āˆ§ š‘… = (š‘Šā€˜š‘‹))))
Distinct variable groups:   š‘„,š‘Ÿ,š“   š‘¦,š‘Ÿ,š¹,š‘„   šœ‘,š‘Ÿ,š‘„,š‘¦   š‘…,š‘Ÿ,š‘„,š‘¦   š‘‹,š‘Ÿ,š‘„,š‘¦   š‘Œ,š‘Ÿ,š‘„,š‘¦   š‘Š,š‘Ÿ,š‘„,š‘¦
Allowed substitution hints:   š“(š‘¦)   š‘‰(š‘„,š‘¦,š‘Ÿ)

Proof of Theorem fpwwe
Dummy variable š‘¢ is distinct from all other variables.
StepHypRef Expression
1 df-ov 7408 . . . . . 6 (š‘Œ(š¹ āˆ˜ 1st )š‘…) = ((š¹ āˆ˜ 1st )ā€˜āŸØš‘Œ, š‘…āŸ©)
2 fo1st 7991 . . . . . . . 8 1st :Vā€“ontoā†’V
3 fofn 6804 . . . . . . . 8 (1st :Vā€“ontoā†’V ā†’ 1st Fn V)
42, 3ax-mp 5 . . . . . . 7 1st Fn V
5 opex 5463 . . . . . . 7 āŸØš‘Œ, š‘…āŸ© āˆˆ V
6 fvco2 6985 . . . . . . 7 ((1st Fn V āˆ§ āŸØš‘Œ, š‘…āŸ© āˆˆ V) ā†’ ((š¹ āˆ˜ 1st )ā€˜āŸØš‘Œ, š‘…āŸ©) = (š¹ā€˜(1st ā€˜āŸØš‘Œ, š‘…āŸ©)))
74, 5, 6mp2an 690 . . . . . 6 ((š¹ āˆ˜ 1st )ā€˜āŸØš‘Œ, š‘…āŸ©) = (š¹ā€˜(1st ā€˜āŸØš‘Œ, š‘…āŸ©))
81, 7eqtri 2760 . . . . 5 (š‘Œ(š¹ āˆ˜ 1st )š‘…) = (š¹ā€˜(1st ā€˜āŸØš‘Œ, š‘…āŸ©))
9 fpwwe.1 . . . . . . . 8 š‘Š = {āŸØš‘„, š‘ŸāŸ© āˆ£ ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„)) āˆ§ (š‘Ÿ We š‘„ āˆ§ āˆ€š‘¦ āˆˆ š‘„ (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})) = š‘¦))}
109bropaex12 5765 . . . . . . 7 (š‘Œš‘Šš‘… ā†’ (š‘Œ āˆˆ V āˆ§ š‘… āˆˆ V))
11 op1stg 7983 . . . . . . 7 ((š‘Œ āˆˆ V āˆ§ š‘… āˆˆ V) ā†’ (1st ā€˜āŸØš‘Œ, š‘…āŸ©) = š‘Œ)
1210, 11syl 17 . . . . . 6 (š‘Œš‘Šš‘… ā†’ (1st ā€˜āŸØš‘Œ, š‘…āŸ©) = š‘Œ)
1312fveq2d 6892 . . . . 5 (š‘Œš‘Šš‘… ā†’ (š¹ā€˜(1st ā€˜āŸØš‘Œ, š‘…āŸ©)) = (š¹ā€˜š‘Œ))
148, 13eqtrid 2784 . . . 4 (š‘Œš‘Šš‘… ā†’ (š‘Œ(š¹ āˆ˜ 1st )š‘…) = (š¹ā€˜š‘Œ))
1514eleq1d 2818 . . 3 (š‘Œš‘Šš‘… ā†’ ((š‘Œ(š¹ āˆ˜ 1st )š‘…) āˆˆ š‘Œ ā†” (š¹ā€˜š‘Œ) āˆˆ š‘Œ))
1615pm5.32i 575 . 2 ((š‘Œš‘Šš‘… āˆ§ (š‘Œ(š¹ āˆ˜ 1st )š‘…) āˆˆ š‘Œ) ā†” (š‘Œš‘Šš‘… āˆ§ (š¹ā€˜š‘Œ) āˆˆ š‘Œ))
17 vex 3478 . . . . . . . . . . 11 š‘Ÿ āˆˆ V
1817cnvex 7912 . . . . . . . . . 10 ā—”š‘Ÿ āˆˆ V
1918imaex 7903 . . . . . . . . 9 (ā—”š‘Ÿ ā€œ {š‘¦}) āˆˆ V
20 vex 3478 . . . . . . . . . . . 12 š‘¢ āˆˆ V
2117inex1 5316 . . . . . . . . . . . 12 (š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢)) āˆˆ V
2220, 21opco1i 8107 . . . . . . . . . . 11 (š‘¢(š¹ āˆ˜ 1st )(š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢))) = (š¹ā€˜š‘¢)
23 fveq2 6888 . . . . . . . . . . 11 (š‘¢ = (ā—”š‘Ÿ ā€œ {š‘¦}) ā†’ (š¹ā€˜š‘¢) = (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})))
2422, 23eqtrid 2784 . . . . . . . . . 10 (š‘¢ = (ā—”š‘Ÿ ā€œ {š‘¦}) ā†’ (š‘¢(š¹ āˆ˜ 1st )(š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢))) = (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})))
2524eqeq1d 2734 . . . . . . . . 9 (š‘¢ = (ā—”š‘Ÿ ā€œ {š‘¦}) ā†’ ((š‘¢(š¹ āˆ˜ 1st )(š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢))) = š‘¦ ā†” (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})) = š‘¦))
2619, 25sbcie 3819 . . . . . . . 8 ([(ā—”š‘Ÿ ā€œ {š‘¦}) / š‘¢](š‘¢(š¹ āˆ˜ 1st )(š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢))) = š‘¦ ā†” (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})) = š‘¦)
2726ralbii 3093 . . . . . . 7 (āˆ€š‘¦ āˆˆ š‘„ [(ā—”š‘Ÿ ā€œ {š‘¦}) / š‘¢](š‘¢(š¹ āˆ˜ 1st )(š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢))) = š‘¦ ā†” āˆ€š‘¦ āˆˆ š‘„ (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})) = š‘¦)
2827anbi2i 623 . . . . . 6 ((š‘Ÿ We š‘„ āˆ§ āˆ€š‘¦ āˆˆ š‘„ [(ā—”š‘Ÿ ā€œ {š‘¦}) / š‘¢](š‘¢(š¹ āˆ˜ 1st )(š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢))) = š‘¦) ā†” (š‘Ÿ We š‘„ āˆ§ āˆ€š‘¦ āˆˆ š‘„ (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})) = š‘¦))
2928anbi2i 623 . . . . 5 (((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„)) āˆ§ (š‘Ÿ We š‘„ āˆ§ āˆ€š‘¦ āˆˆ š‘„ [(ā—”š‘Ÿ ā€œ {š‘¦}) / š‘¢](š‘¢(š¹ āˆ˜ 1st )(š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢))) = š‘¦)) ā†” ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„)) āˆ§ (š‘Ÿ We š‘„ āˆ§ āˆ€š‘¦ āˆˆ š‘„ (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})) = š‘¦)))
3029opabbii 5214 . . . 4 {āŸØš‘„, š‘ŸāŸ© āˆ£ ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„)) āˆ§ (š‘Ÿ We š‘„ āˆ§ āˆ€š‘¦ āˆˆ š‘„ [(ā—”š‘Ÿ ā€œ {š‘¦}) / š‘¢](š‘¢(š¹ āˆ˜ 1st )(š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢))) = š‘¦))} = {āŸØš‘„, š‘ŸāŸ© āˆ£ ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„)) āˆ§ (š‘Ÿ We š‘„ āˆ§ āˆ€š‘¦ āˆˆ š‘„ (š¹ā€˜(ā—”š‘Ÿ ā€œ {š‘¦})) = š‘¦))}
319, 30eqtr4i 2763 . . 3 š‘Š = {āŸØš‘„, š‘ŸāŸ© āˆ£ ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„)) āˆ§ (š‘Ÿ We š‘„ āˆ§ āˆ€š‘¦ āˆˆ š‘„ [(ā—”š‘Ÿ ā€œ {š‘¦}) / š‘¢](š‘¢(š¹ āˆ˜ 1st )(š‘Ÿ āˆ© (š‘¢ Ɨ š‘¢))) = š‘¦))}
32 fpwwe.2 . . 3 (šœ‘ ā†’ š“ āˆˆ š‘‰)
33 vex 3478 . . . . 5 š‘„ āˆˆ V
3433, 17opco1i 8107 . . . 4 (š‘„(š¹ āˆ˜ 1st )š‘Ÿ) = (š¹ā€˜š‘„)
35 simp1 1136 . . . . . . 7 ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„) āˆ§ š‘Ÿ We š‘„) ā†’ š‘„ āŠ† š“)
36 velpw 4606 . . . . . . 7 (š‘„ āˆˆ š’« š“ ā†” š‘„ āŠ† š“)
3735, 36sylibr 233 . . . . . 6 ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„) āˆ§ š‘Ÿ We š‘„) ā†’ š‘„ āˆˆ š’« š“)
38 19.8a 2174 . . . . . . . 8 (š‘Ÿ We š‘„ ā†’ āˆƒš‘Ÿ š‘Ÿ We š‘„)
39383ad2ant3 1135 . . . . . . 7 ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„) āˆ§ š‘Ÿ We š‘„) ā†’ āˆƒš‘Ÿ š‘Ÿ We š‘„)
40 ween 10026 . . . . . . 7 (š‘„ āˆˆ dom card ā†” āˆƒš‘Ÿ š‘Ÿ We š‘„)
4139, 40sylibr 233 . . . . . 6 ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„) āˆ§ š‘Ÿ We š‘„) ā†’ š‘„ āˆˆ dom card)
4237, 41elind 4193 . . . . 5 ((š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„) āˆ§ š‘Ÿ We š‘„) ā†’ š‘„ āˆˆ (š’« š“ āˆ© dom card))
43 fpwwe.3 . . . . 5 ((šœ‘ āˆ§ š‘„ āˆˆ (š’« š“ āˆ© dom card)) ā†’ (š¹ā€˜š‘„) āˆˆ š“)
4442, 43sylan2 593 . . . 4 ((šœ‘ āˆ§ (š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„) āˆ§ š‘Ÿ We š‘„)) ā†’ (š¹ā€˜š‘„) āˆˆ š“)
4534, 44eqeltrid 2837 . . 3 ((šœ‘ āˆ§ (š‘„ āŠ† š“ āˆ§ š‘Ÿ āŠ† (š‘„ Ɨ š‘„) āˆ§ š‘Ÿ We š‘„)) ā†’ (š‘„(š¹ āˆ˜ 1st )š‘Ÿ) āˆˆ š“)
46 fpwwe.4 . . 3 š‘‹ = āˆŖ dom š‘Š
4731, 32, 45, 46fpwwe2 10634 . 2 (šœ‘ ā†’ ((š‘Œš‘Šš‘… āˆ§ (š‘Œ(š¹ āˆ˜ 1st )š‘…) āˆˆ š‘Œ) ā†” (š‘Œ = š‘‹ āˆ§ š‘… = (š‘Šā€˜š‘‹))))
4816, 47bitr3id 284 1 (šœ‘ ā†’ ((š‘Œš‘Šš‘… āˆ§ (š¹ā€˜š‘Œ) āˆˆ š‘Œ) ā†” (š‘Œ = š‘‹ āˆ§ š‘… = (š‘Šā€˜š‘‹))))
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   ā†” wb 205   āˆ§ wa 396   āˆ§ w3a 1087   = wceq 1541  āˆƒwex 1781   āˆˆ wcel 2106  āˆ€wral 3061  Vcvv 3474  [wsbc 3776   āˆ© cin 3946   āŠ† wss 3947  š’« cpw 4601  {csn 4627  āŸØcop 4633  āˆŖ cuni 4907   class class class wbr 5147  {copab 5209   We wwe 5629   Ɨ cxp 5673  ā—”ccnv 5674  dom cdm 5675   ā€œ cima 5678   āˆ˜ ccom 5679   Fn wfn 6535  ā€“ontoā†’wfo 6538  ā€˜cfv 6540  (class class class)co 7405  1st c1st 7969  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-en 8936  df-oi 9501  df-card 9930
This theorem is referenced by:  canth4  10638  canthnumlem  10639  canthp1lem2  10644
  Copyright terms: Public domain W3C validator