MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovpreldm Structured version   Visualization version   GIF version

Theorem brovpreldm 7929
Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.)
Assertion
Ref Expression
brovpreldm (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)

Proof of Theorem brovpreldm
StepHypRef Expression
1 df-br 5075 . 2 (𝐷(𝐵𝐴𝐶)𝐸 ↔ ⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶))
2 ne0i 4268 . . 3 (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → (𝐵𝐴𝐶) ≠ ∅)
3 df-ov 7278 . . . . 5 (𝐵𝐴𝐶) = (𝐴‘⟨𝐵, 𝐶⟩)
4 ndmfv 6804 . . . . 5 (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐴‘⟨𝐵, 𝐶⟩) = ∅)
53, 4eqtrid 2790 . . . 4 (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐵𝐴𝐶) = ∅)
65necon1ai 2971 . . 3 ((𝐵𝐴𝐶) ≠ ∅ → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
72, 6syl 17 . 2 (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
81, 7sylbi 216 1 (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  wne 2943  c0 4256  cop 4567   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  bropopvvv  7930  bropfvvvv  7932
  Copyright terms: Public domain W3C validator