MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovpreldm Structured version   Visualization version   GIF version

Theorem brovpreldm 8113
Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.)
Assertion
Ref Expression
brovpreldm (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)

Proof of Theorem brovpreldm
StepHypRef Expression
1 df-br 5149 . 2 (𝐷(𝐵𝐴𝐶)𝐸 ↔ ⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶))
2 ne0i 4347 . . 3 (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → (𝐵𝐴𝐶) ≠ ∅)
3 df-ov 7434 . . . . 5 (𝐵𝐴𝐶) = (𝐴‘⟨𝐵, 𝐶⟩)
4 ndmfv 6942 . . . . 5 (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐴‘⟨𝐵, 𝐶⟩) = ∅)
53, 4eqtrid 2787 . . . 4 (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐵𝐴𝐶) = ∅)
65necon1ai 2966 . . 3 ((𝐵𝐴𝐶) ≠ ∅ → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
72, 6syl 17 . 2 (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
81, 7sylbi 217 1 (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  wne 2938  c0 4339  cop 4637   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-dm 5699  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  bropopvvv  8114  bropfvvvv  8116
  Copyright terms: Public domain W3C validator