Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brovpreldm | Structured version Visualization version GIF version |
Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.) |
Ref | Expression |
---|---|
brovpreldm | ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5093 | . 2 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 ↔ 〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶)) | |
2 | ne0i 4281 | . . 3 ⊢ (〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶) → (𝐵𝐴𝐶) ≠ ∅) | |
3 | df-ov 7340 | . . . . 5 ⊢ (𝐵𝐴𝐶) = (𝐴‘〈𝐵, 𝐶〉) | |
4 | ndmfv 6860 | . . . . 5 ⊢ (¬ 〈𝐵, 𝐶〉 ∈ dom 𝐴 → (𝐴‘〈𝐵, 𝐶〉) = ∅) | |
5 | 3, 4 | eqtrid 2788 | . . . 4 ⊢ (¬ 〈𝐵, 𝐶〉 ∈ dom 𝐴 → (𝐵𝐴𝐶) = ∅) |
6 | 5 | necon1ai 2968 | . . 3 ⊢ ((𝐵𝐴𝐶) ≠ ∅ → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
7 | 2, 6 | syl 17 | . 2 ⊢ (〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶) → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ≠ wne 2940 ∅c0 4269 〈cop 4579 class class class wbr 5092 dom cdm 5620 ‘cfv 6479 (class class class)co 7337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-dm 5630 df-iota 6431 df-fv 6487 df-ov 7340 |
This theorem is referenced by: bropopvvv 7998 bropfvvvv 8000 |
Copyright terms: Public domain | W3C validator |