| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brovpreldm | Structured version Visualization version GIF version | ||
| Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.) |
| Ref | Expression |
|---|---|
| brovpreldm | ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5111 | . 2 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 ↔ 〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶)) | |
| 2 | ne0i 4307 | . . 3 ⊢ (〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶) → (𝐵𝐴𝐶) ≠ ∅) | |
| 3 | df-ov 7393 | . . . . 5 ⊢ (𝐵𝐴𝐶) = (𝐴‘〈𝐵, 𝐶〉) | |
| 4 | ndmfv 6896 | . . . . 5 ⊢ (¬ 〈𝐵, 𝐶〉 ∈ dom 𝐴 → (𝐴‘〈𝐵, 𝐶〉) = ∅) | |
| 5 | 3, 4 | eqtrid 2777 | . . . 4 ⊢ (¬ 〈𝐵, 𝐶〉 ∈ dom 𝐴 → (𝐵𝐴𝐶) = ∅) |
| 6 | 5 | necon1ai 2953 | . . 3 ⊢ ((𝐵𝐴𝐶) ≠ ∅ → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ (〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶) → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 〈cop 4598 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: bropopvvv 8072 bropfvvvv 8074 |
| Copyright terms: Public domain | W3C validator |