MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovpreldm Structured version   Visualization version   GIF version

Theorem brovpreldm 7997
Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.)
Assertion
Ref Expression
brovpreldm (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)

Proof of Theorem brovpreldm
StepHypRef Expression
1 df-br 5093 . 2 (𝐷(𝐵𝐴𝐶)𝐸 ↔ ⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶))
2 ne0i 4281 . . 3 (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → (𝐵𝐴𝐶) ≠ ∅)
3 df-ov 7340 . . . . 5 (𝐵𝐴𝐶) = (𝐴‘⟨𝐵, 𝐶⟩)
4 ndmfv 6860 . . . . 5 (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐴‘⟨𝐵, 𝐶⟩) = ∅)
53, 4eqtrid 2788 . . . 4 (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐵𝐴𝐶) = ∅)
65necon1ai 2968 . . 3 ((𝐵𝐴𝐶) ≠ ∅ → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
72, 6syl 17 . 2 (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
81, 7sylbi 216 1 (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2105  wne 2940  c0 4269  cop 4579   class class class wbr 5092  dom cdm 5620  cfv 6479  (class class class)co 7337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-dm 5630  df-iota 6431  df-fv 6487  df-ov 7340
This theorem is referenced by:  bropopvvv  7998  bropfvvvv  8000
  Copyright terms: Public domain W3C validator