![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brovpreldm | Structured version Visualization version GIF version |
Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.) |
Ref | Expression |
---|---|
brovpreldm | ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5139 | . 2 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 ↔ ⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶)) | |
2 | ne0i 4326 | . . 3 ⊢ (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → (𝐵𝐴𝐶) ≠ ∅) | |
3 | df-ov 7404 | . . . . 5 ⊢ (𝐵𝐴𝐶) = (𝐴‘⟨𝐵, 𝐶⟩) | |
4 | ndmfv 6916 | . . . . 5 ⊢ (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐴‘⟨𝐵, 𝐶⟩) = ∅) | |
5 | 3, 4 | eqtrid 2776 | . . . 4 ⊢ (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐵𝐴𝐶) = ∅) |
6 | 5 | necon1ai 2960 | . . 3 ⊢ ((𝐵𝐴𝐶) ≠ ∅ → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴) |
7 | 2, 6 | syl 17 | . 2 ⊢ (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ≠ wne 2932 ∅c0 4314 ⟨cop 4626 class class class wbr 5138 dom cdm 5666 ‘cfv 6533 (class class class)co 7401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-dm 5676 df-iota 6485 df-fv 6541 df-ov 7404 |
This theorem is referenced by: bropopvvv 8070 bropfvvvv 8072 |
Copyright terms: Public domain | W3C validator |