MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovpreldm Structured version   Visualization version   GIF version

Theorem brovpreldm 8068
Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.)
Assertion
Ref Expression
brovpreldm (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)

Proof of Theorem brovpreldm
StepHypRef Expression
1 df-br 5108 . 2 (𝐷(𝐵𝐴𝐶)𝐸 ↔ ⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶))
2 ne0i 4304 . . 3 (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → (𝐵𝐴𝐶) ≠ ∅)
3 df-ov 7390 . . . . 5 (𝐵𝐴𝐶) = (𝐴‘⟨𝐵, 𝐶⟩)
4 ndmfv 6893 . . . . 5 (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐴‘⟨𝐵, 𝐶⟩) = ∅)
53, 4eqtrid 2776 . . . 4 (¬ ⟨𝐵, 𝐶⟩ ∈ dom 𝐴 → (𝐵𝐴𝐶) = ∅)
65necon1ai 2952 . . 3 ((𝐵𝐴𝐶) ≠ ∅ → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
72, 6syl 17 . 2 (⟨𝐷, 𝐸⟩ ∈ (𝐵𝐴𝐶) → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
81, 7sylbi 217 1 (𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wne 2925  c0 4296  cop 4595   class class class wbr 5107  dom cdm 5638  cfv 6511  (class class class)co 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  bropopvvv  8069  bropfvvvv  8071
  Copyright terms: Public domain W3C validator