Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brovpreldm | Structured version Visualization version GIF version |
Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.) |
Ref | Expression |
---|---|
brovpreldm | ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . 2 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 ↔ 〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶)) | |
2 | ne0i 4265 | . . 3 ⊢ (〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶) → (𝐵𝐴𝐶) ≠ ∅) | |
3 | df-ov 7258 | . . . . 5 ⊢ (𝐵𝐴𝐶) = (𝐴‘〈𝐵, 𝐶〉) | |
4 | ndmfv 6786 | . . . . 5 ⊢ (¬ 〈𝐵, 𝐶〉 ∈ dom 𝐴 → (𝐴‘〈𝐵, 𝐶〉) = ∅) | |
5 | 3, 4 | eqtrid 2790 | . . . 4 ⊢ (¬ 〈𝐵, 𝐶〉 ∈ dom 𝐴 → (𝐵𝐴𝐶) = ∅) |
6 | 5 | necon1ai 2970 | . . 3 ⊢ ((𝐵𝐴𝐶) ≠ ∅ → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
7 | 2, 6 | syl 17 | . 2 ⊢ (〈𝐷, 𝐸〉 ∈ (𝐵𝐴𝐶) → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 〈cop 4564 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: bropopvvv 7901 bropfvvvv 7903 |
Copyright terms: Public domain | W3C validator |