| Metamath
Proof Explorer Theorem List (p. 81 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eloprabi 8001* | A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ (𝑥 = (1st ‘(1st ‘𝐴)) → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = (2nd ‘(1st ‘𝐴)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = (2nd ‘𝐴) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → 𝜃) | ||
| Theorem | mpomptsx 8002* | Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) | ||
| Theorem | mpompts 8003* | Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.) |
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) | ||
| Theorem | dmmpossx 8004* | The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | ||
| Theorem | fmpox 8005* | Functionality, domain and codomain of a class given by the maps-to notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) | ||
| Theorem | fmpo 8006* | Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) | ||
| Theorem | fnmpo 8007* | Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → 𝐹 Fn (𝐴 × 𝐵)) | ||
| Theorem | fnmpoi 8008* | Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V ⇒ ⊢ 𝐹 Fn (𝐴 × 𝐵) | ||
| Theorem | dmmpo 8009* | Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V ⇒ ⊢ dom 𝐹 = (𝐴 × 𝐵) | ||
| Theorem | ovmpoelrn 8010* | An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.) |
| ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) ∈ 𝑀) | ||
| Theorem | dmmpoga 8011* | Domain of an operation given by the maps-to notation, closed form of dmmpo 8009. (Contributed by Alexander van der Vekens, 10-Feb-2019.) (Proof shortened by Lammen, 29-May-2024.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) | ||
| Theorem | dmmpog 8012* | Domain of an operation given by the maps-to notation, closed form of dmmpo 8009. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) | ||
| Theorem | mpoexxg 8013* | Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) | ||
| Theorem | mpoexg 8014* | Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝐹 ∈ V) | ||
| Theorem | mpoexga 8015* | If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) | ||
| Theorem | mpoexw 8016* | Weak version of mpoex 8017 that holds without ax-rep 5219. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V | ||
| Theorem | mpoex 8017* | If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V | ||
| Theorem | mptmpoopabbrd 8018* | The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, ℎ to remove hypotheses; avoid ax-rep 5219. (Revised by SN, 7-Apr-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) & ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝜏 ↔ 𝜃)) & ⊢ (𝑔 = 𝐺 → (𝜒 ↔ 𝜏)) & ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)})) ⇒ ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) | ||
| Theorem | mptmpoopabbrdOLD 8019* | Obsolete version of mptmpoopabbrd 8018 as of 7-Apr-2025. (Contributed by Alexander van Vekens, 8-Nov-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) & ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝜏 ↔ 𝜃)) & ⊢ (𝑔 = 𝐺 → (𝜒 ↔ 𝜏)) & ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)})) ⇒ ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) | ||
| Theorem | mptmpoopabovd 8020* | The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, ℎ to remove hypotheses. (Revised by SN, 13-Dec-2024.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) & ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) ⇒ ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) | ||
| Theorem | el2mpocsbcl 8021* | If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.) |
| ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) | ||
| Theorem | el2mpocl 8022* | If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.) |
| ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) & ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐶 = 𝐹 ∧ 𝐷 = 𝐺)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺)))) | ||
| Theorem | fnmpoovd 8023* | A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.) |
| ⊢ (𝜑 → 𝑀 Fn (𝐴 × 𝐵)) & ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) → 𝐷 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = 𝐷)) | ||
| Theorem | offval22 8024* | The function operation expressed as a mapping, variation of offval2 7636. (Contributed by SO, 15-Jul-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑅𝐷))) | ||
| Theorem | brovpreldm 8025 | If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.) |
| ⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) | ||
| Theorem | bropopvvv 8026* | If a binary relation holds for the result of an operation which is a result of an operation, the involved classes are sets. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Proof shortened by AV, 3-Jan-2021.) |
| ⊢ 𝑂 = (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑎 ∈ 𝑣, 𝑏 ∈ 𝑣 ↦ {〈𝑓, 𝑝〉 ∣ 𝜑})) & ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜑 ↔ 𝜓)) & ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑉𝑂𝐸)𝐵) = {〈𝑓, 𝑝〉 ∣ 𝜃}) ⇒ ⊢ (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) | ||
| Theorem | bropfvvvvlem 8027* | Lemma for bropfvvvv 8028. (Contributed by AV, 31-Dec-2020.) (Revised by AV, 16-Jan-2021.) |
| ⊢ 𝑂 = (𝑎 ∈ 𝑈 ↦ (𝑏 ∈ 𝑉, 𝑐 ∈ 𝑊 ↦ {〈𝑑, 𝑒〉 ∣ 𝜑})) & ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (𝐵(𝑂‘𝐴)𝐶) = {〈𝑑, 𝑒〉 ∣ 𝜃}) ⇒ ⊢ ((〈𝐵, 𝐶〉 ∈ (𝑆 × 𝑇) ∧ 𝐷(𝐵(𝑂‘𝐴)𝐶)𝐸) → (𝐴 ∈ 𝑈 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))) | ||
| Theorem | bropfvvvv 8028* | If a binary relation holds for the result of an operation which is a function value, the involved classes are sets. (Contributed by AV, 31-Dec-2020.) (Revised by AV, 16-Jan-2021.) |
| ⊢ 𝑂 = (𝑎 ∈ 𝑈 ↦ (𝑏 ∈ 𝑉, 𝑐 ∈ 𝑊 ↦ {〈𝑑, 𝑒〉 ∣ 𝜑})) & ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (𝐵(𝑂‘𝐴)𝐶) = {〈𝑑, 𝑒〉 ∣ 𝜃}) & ⊢ (𝑎 = 𝐴 → 𝑉 = 𝑆) & ⊢ (𝑎 = 𝐴 → 𝑊 = 𝑇) & ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌) → (𝐷(𝐵(𝑂‘𝐴)𝐶)𝐸 → (𝐴 ∈ 𝑈 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))) | ||
| Theorem | ovmptss 8029* | If all the values of the mapping are subsets of a class 𝑋, then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 → (𝐸𝐹𝐺) ⊆ 𝑋) | ||
| Theorem | relmpoopab 8030* | Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) ⇒ ⊢ Rel (𝐶𝐹𝐷) | ||
| Theorem | fmpoco 8031* | Composition of two functions. Variation of fmptco 7068 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ 𝐶) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐶 ↦ 𝑆)) & ⊢ (𝑧 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑇)) | ||
| Theorem | oprabco 8032* | Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) & ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) ⇒ ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) | ||
| Theorem | oprab2co 8033* | Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑅) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈𝐶, 𝐷〉) & ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑀𝐷)) ⇒ ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) | ||
| Theorem | df1st2 8034* | An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) | ||
| Theorem | df2nd2 8035* | An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) | ||
| Theorem | 1stconst 8036 | The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐵 ∈ 𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto→𝐴) | ||
| Theorem | 2ndconst 8037 | The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto→𝐵) | ||
| Theorem | dfmpo 8038* | Alternate definition for the maps-to notation df-mpo 7357 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} | ||
| Theorem | mposn 8039* | An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶) & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑦 = 𝐵 → 𝐷 = 𝐸) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → 𝐹 = {〈〈𝐴, 𝐵〉, 𝐸〉}) | ||
| Theorem | curry1 8040* | Composition with ◡(2nd ↾ ({𝐶} × V)) turns any binary operation 𝐹 with a constant first operand into a function 𝐺 of the second operand only. This transformation is called "currying". (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) ⇒ ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) | ||
| Theorem | curry1val 8041 | The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) ⇒ ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) | ||
| Theorem | curry1f 8042 | Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008.) |
| ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) ⇒ ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴) → 𝐺:𝐵⟶𝐷) | ||
| Theorem | curry2 8043* | Composition with ◡(1st ↾ (V × {𝐶})) turns any binary operation 𝐹 with a constant second operand into a function 𝐺 of the first operand only. This transformation is called "currying". (If this becomes frequently used, we can introduce a new notation for the hypothesis.) (Contributed by NM, 16-Dec-2008.) |
| ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) ⇒ ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) | ||
| Theorem | curry2f 8044 | Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
| ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) ⇒ ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶𝐷) | ||
| Theorem | curry2val 8045 | The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
| ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) ⇒ ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) | ||
| Theorem | cnvf1olem 8046 | Lemma for cnvf1o 8047. (Contributed by Mario Carneiro, 27-Apr-2014.) |
| ⊢ ((Rel 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → (𝐶 ∈ ◡𝐴 ∧ 𝐵 = ∪ ◡{𝐶})) | ||
| Theorem | cnvf1o 8047* | Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
| ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) | ||
| Theorem | fparlem1 8048 | Lemma for fpar 8052. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (◡(1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V) | ||
| Theorem | fparlem2 8049 | Lemma for fpar 8052. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (◡(2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦}) | ||
| Theorem | fparlem3 8050* | Lemma for fpar 8052. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐹 Fn 𝐴 → (◡(1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) = ∪ 𝑥 ∈ 𝐴 (({𝑥} × V) × ({(𝐹‘𝑥)} × V))) | ||
| Theorem | fparlem4 8051* | Lemma for fpar 8052. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐺 Fn 𝐵 → (◡(2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = ∪ 𝑦 ∈ 𝐵 ((V × {𝑦}) × (V × {(𝐺‘𝑦)}))) | ||
| Theorem | fpar 8052* | Merge two functions in parallel. Use as the second argument of a composition with a binary operation to build compound functions such as (𝑥 ∈ (0[,)+∞), 𝑦 ∈ ℝ ↦ ((√‘𝑥) + (sin‘𝑦))), see also ex-fpar 30444. (Contributed by NM, 17-Sep-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ 𝐻 = ((◡(1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V))))) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉)) | ||
| Theorem | fsplit 8053 | A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar 8052 in order to build compound functions such as (𝑥 ∈ (0[,)+∞) ↦ ((√‘𝑥) + (sin‘𝑥))). (Contributed by NM, 17-Sep-2007.) Replace use of dfid2 5516 with df-id 5514. (Revised by BJ, 31-Dec-2023.) |
| ⊢ ◡(1st ↾ I ) = (𝑥 ∈ V ↦ 〈𝑥, 𝑥〉) | ||
| Theorem | fsplitfpar 8054* | Merge two functions with a common argument in parallel. Combination of fsplit 8053 and fpar 8052. (Contributed by AV, 3-Jan-2024.) |
| ⊢ 𝐻 = ((◡(1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V))))) & ⊢ 𝑆 = (◡(1st ↾ I ) ↾ 𝐴) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐻 ∘ 𝑆) = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) | ||
| Theorem | offsplitfpar 8055 | Express the function operation map ∘f by the functions defined in fsplit 8053 and fpar 8052. (Contributed by AV, 4-Jan-2024.) |
| ⊢ 𝐻 = ((◡(1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V))))) & ⊢ 𝑆 = (◡(1st ↾ I ) ↾ 𝐴) ⇒ ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻 ∘ 𝑆)) = (𝐹 ∘f + 𝐺)) | ||
| Theorem | f2ndf 8056 | The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) | ||
| Theorem | fo2ndf 8057 | The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) | ||
| Theorem | f1o2ndf1 8058 | The 2nd (second component of an ordered pair) function restricted to a one-to-one function 𝐹 is a one-to-one function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| ⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹) | ||
| Theorem | opco1 8059 | Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹‘𝐴)) | ||
| Theorem | opco2 8060 | Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) | ||
| Theorem | opco1i 8061 | Inference form of opco1 8059. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) | ||
| Theorem | frxp 8062* | A lexicographical ordering of two well-founded classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) (Proof shortened by Wolf Lammen, 4-Oct-2014.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵) → 𝑇 Fr (𝐴 × 𝐵)) | ||
| Theorem | xporderlem 8063* | Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} ⇒ ⊢ (〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) | ||
| Theorem | poxp 8064* | A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} ⇒ ⊢ ((𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵) → 𝑇 Po (𝐴 × 𝐵)) | ||
| Theorem | soxp 8065* | A lexicographical ordering of two strictly ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐴 × 𝐵)) | ||
| Theorem | wexp 8066* | A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵)) | ||
| Theorem | fnwelem 8067* | Lemma for fnwe 8068. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) & ⊢ (𝜑 → 𝑆 We 𝐴) & ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) & ⊢ 𝑄 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} & ⊢ 𝐺 = (𝑧 ∈ 𝐴 ↦ 〈(𝐹‘𝑧), 𝑧〉) ⇒ ⊢ (𝜑 → 𝑇 We 𝐴) | ||
| Theorem | fnwe 8068* | A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) & ⊢ (𝜑 → 𝑆 We 𝐴) & ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) ⇒ ⊢ (𝜑 → 𝑇 We 𝐴) | ||
| Theorem | fnse 8069* | Condition for the well-order in fnwe 8068 to be set-like. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 Se 𝐵) & ⊢ (𝜑 → (◡𝐹 “ 𝑤) ∈ V) ⇒ ⊢ (𝜑 → 𝑇 Se 𝐴) | ||
| Theorem | fvproj 8070* | Value of a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.) |
| ⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) | ||
| Theorem | fimaproj 8071* | Image of a cartesian product for a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.) |
| ⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝑌 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 “ (𝑋 × 𝑌)) = ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) | ||
| Theorem | ralxpes 8072* | A version of ralxp 5785 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.) |
| ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜑) | ||
| Theorem | ralxp3f 8073* | Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) | ||
| Theorem | ralxp3 8074* | Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) | ||
| Theorem | ralxp3es 8075* | Restricted for-all over a triple Cartesian product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜑) | ||
| Theorem | frpoins3xpg 8076* | Special case of founded partial induction over a Cartesian product. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ Pred(𝑅, (𝐴 × 𝐵), 〈𝑥, 𝑦〉) → 𝜒) → 𝜑)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜃)) & ⊢ (𝑦 = 𝑌 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (((𝑅 Fr (𝐴 × 𝐵) ∧ 𝑅 Po (𝐴 × 𝐵) ∧ 𝑅 Se (𝐴 × 𝐵)) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝜏) | ||
| Theorem | frpoins3xp3g 8077* | Special case of founded partial recursion over a triple Cartesian product. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → (∀𝑤∀𝑡∀𝑢(〈𝑤, 𝑡, 𝑢〉 ∈ Pred(𝑅, ((𝐴 × 𝐵) × 𝐶), 〈𝑥, 𝑦, 𝑧〉) → 𝜃) → 𝜑)) & ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑡 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝑢 → (𝜒 ↔ 𝜃)) & ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 = 𝑌 → (𝜏 ↔ 𝜂)) & ⊢ (𝑧 = 𝑍 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (((𝑅 Fr ((𝐴 × 𝐵) × 𝐶) ∧ 𝑅 Po ((𝐴 × 𝐵) × 𝐶) ∧ 𝑅 Se ((𝐴 × 𝐵) × 𝐶)) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶)) → 𝜁) | ||
| Theorem | xpord2lem 8078* | Lemma for Cartesian product ordering. Calculate the value of the Cartesian product relation. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ (〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵) ∧ ((𝑎𝑅𝑐 ∨ 𝑎 = 𝑐) ∧ (𝑏𝑆𝑑 ∨ 𝑏 = 𝑑) ∧ (𝑎 ≠ 𝑐 ∨ 𝑏 ≠ 𝑑)))) | ||
| Theorem | poxp2 8079* | Another way of partially ordering a Cartesian product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} & ⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) ⇒ ⊢ (𝜑 → 𝑇 Po (𝐴 × 𝐵)) | ||
| Theorem | frxp2 8080* | Another way of giving a well-founded order to a Cartesian product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} & ⊢ (𝜑 → 𝑅 Fr 𝐴) & ⊢ (𝜑 → 𝑆 Fr 𝐵) ⇒ ⊢ (𝜑 → 𝑇 Fr (𝐴 × 𝐵)) | ||
| Theorem | xpord2pred 8081* | Calculate the predecessor class in frxp2 8080. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → Pred(𝑇, (𝐴 × 𝐵), 〈𝑋, 𝑌〉) = (((Pred(𝑅, 𝐴, 𝑋) ∪ {𝑋}) × (Pred(𝑆, 𝐵, 𝑌) ∪ {𝑌})) ∖ {〈𝑋, 𝑌〉})) | ||
| Theorem | sexp2 8082* | Condition for the relation in frxp2 8080 to be set-like. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑆 Se 𝐵) ⇒ ⊢ (𝜑 → 𝑇 Se (𝐴 × 𝐵)) | ||
| Theorem | xpord2indlem 8083* | Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} & ⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Po 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝑆 Fr 𝐵 & ⊢ 𝑆 Po 𝐵 & ⊢ 𝑆 Se 𝐵 & ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) & ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) & ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) & ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) | ||
| Theorem | xpord2ind 8084* | Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Po 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝑆 Fr 𝐵 & ⊢ 𝑆 Po 𝐵 & ⊢ 𝑆 Se 𝐵 & ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) & ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) & ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) & ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) | ||
| Theorem | xpord3lem 8085* | Lemma for triple ordering. Calculate the value of the relation. (Contributed by Scott Fenton, 21-Aug-2024.) |
| ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st ‘𝑥))𝑅(1st ‘(1st ‘𝑦)) ∨ (1st ‘(1st ‘𝑥)) = (1st ‘(1st ‘𝑦))) ∧ ((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st ‘𝑦)) ∨ (2nd ‘(1st ‘𝑥)) = (2nd ‘(1st ‘𝑦))) ∧ ((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ (〈𝑎, 𝑏, 𝑐〉𝑈〈𝑑, 𝑒, 𝑓〉 ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶) ∧ (((𝑎𝑅𝑑 ∨ 𝑎 = 𝑑) ∧ (𝑏𝑆𝑒 ∨ 𝑏 = 𝑒) ∧ (𝑐𝑇𝑓 ∨ 𝑐 = 𝑓)) ∧ (𝑎 ≠ 𝑑 ∨ 𝑏 ≠ 𝑒 ∨ 𝑐 ≠ 𝑓)))) | ||
| Theorem | poxp3 8086* | Triple Cartesian product partial ordering. (Contributed by Scott Fenton, 21-Aug-2024.) |
| ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st ‘𝑥))𝑅(1st ‘(1st ‘𝑦)) ∨ (1st ‘(1st ‘𝑥)) = (1st ‘(1st ‘𝑦))) ∧ ((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st ‘𝑦)) ∨ (2nd ‘(1st ‘𝑥)) = (2nd ‘(1st ‘𝑦))) ∧ ((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} & ⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑇 Po 𝐶) ⇒ ⊢ (𝜑 → 𝑈 Po ((𝐴 × 𝐵) × 𝐶)) | ||
| Theorem | frxp3 8087* | Give well-foundedness over a triple Cartesian product. (Contributed by Scott Fenton, 21-Aug-2024.) |
| ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st ‘𝑥))𝑅(1st ‘(1st ‘𝑦)) ∨ (1st ‘(1st ‘𝑥)) = (1st ‘(1st ‘𝑦))) ∧ ((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st ‘𝑦)) ∨ (2nd ‘(1st ‘𝑥)) = (2nd ‘(1st ‘𝑦))) ∧ ((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} & ⊢ (𝜑 → 𝑅 Fr 𝐴) & ⊢ (𝜑 → 𝑆 Fr 𝐵) & ⊢ (𝜑 → 𝑇 Fr 𝐶) ⇒ ⊢ (𝜑 → 𝑈 Fr ((𝐴 × 𝐵) × 𝐶)) | ||
| Theorem | xpord3pred 8088* | Calculate the predecsessor class for the triple order. (Contributed by Scott Fenton, 31-Jan-2025.) |
| ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st ‘𝑥))𝑅(1st ‘(1st ‘𝑦)) ∨ (1st ‘(1st ‘𝑥)) = (1st ‘(1st ‘𝑦))) ∧ ((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st ‘𝑦)) ∨ (2nd ‘(1st ‘𝑥)) = (2nd ‘(1st ‘𝑦))) ∧ ((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑋, 𝑌, 𝑍〉) = ((((Pred(𝑅, 𝐴, 𝑋) ∪ {𝑋}) × (Pred(𝑆, 𝐵, 𝑌) ∪ {𝑌})) × (Pred(𝑇, 𝐶, 𝑍) ∪ {𝑍})) ∖ {〈𝑋, 𝑌, 𝑍〉})) | ||
| Theorem | sexp3 8089* | Show that the triple order is set-like. (Contributed by Scott Fenton, 21-Aug-2024.) |
| ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st ‘𝑥))𝑅(1st ‘(1st ‘𝑦)) ∨ (1st ‘(1st ‘𝑥)) = (1st ‘(1st ‘𝑦))) ∧ ((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st ‘𝑦)) ∨ (2nd ‘(1st ‘𝑥)) = (2nd ‘(1st ‘𝑦))) ∧ ((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑆 Se 𝐵) & ⊢ (𝜑 → 𝑇 Se 𝐶) ⇒ ⊢ (𝜑 → 𝑈 Se ((𝐴 × 𝐵) × 𝐶)) | ||
| Theorem | xpord3inddlem 8090* | Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st ‘𝑥))𝑅(1st ‘(1st ‘𝑦)) ∨ (1st ‘(1st ‘𝑥)) = (1st ‘(1st ‘𝑦))) ∧ ((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st ‘𝑦)) ∨ (2nd ‘(1st ‘𝑥)) = (2nd ‘(1st ‘𝑦))) ∧ ((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} & ⊢ (𝜅 → 𝑋 ∈ 𝐴) & ⊢ (𝜅 → 𝑌 ∈ 𝐵) & ⊢ (𝜅 → 𝑍 ∈ 𝐶) & ⊢ (𝜅 → 𝑅 Fr 𝐴) & ⊢ (𝜅 → 𝑅 Po 𝐴) & ⊢ (𝜅 → 𝑅 Se 𝐴) & ⊢ (𝜅 → 𝑆 Fr 𝐵) & ⊢ (𝜅 → 𝑆 Po 𝐵) & ⊢ (𝜅 → 𝑆 Se 𝐵) & ⊢ (𝜅 → 𝑇 Fr 𝐶) & ⊢ (𝜅 → 𝑇 Po 𝐶) & ⊢ (𝜅 → 𝑇 Se 𝐶) & ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) ⇒ ⊢ (𝜅 → 𝜆) | ||
| Theorem | xpord3indd 8091* | Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜅 → 𝑋 ∈ 𝐴) & ⊢ (𝜅 → 𝑌 ∈ 𝐵) & ⊢ (𝜅 → 𝑍 ∈ 𝐶) & ⊢ (𝜅 → 𝑅 Fr 𝐴) & ⊢ (𝜅 → 𝑅 Po 𝐴) & ⊢ (𝜅 → 𝑅 Se 𝐴) & ⊢ (𝜅 → 𝑆 Fr 𝐵) & ⊢ (𝜅 → 𝑆 Po 𝐵) & ⊢ (𝜅 → 𝑆 Se 𝐵) & ⊢ (𝜅 → 𝑇 Fr 𝐶) & ⊢ (𝜅 → 𝑇 Po 𝐶) & ⊢ (𝜅 → 𝑇 Se 𝐶) & ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) ⇒ ⊢ (𝜅 → 𝜆) | ||
| Theorem | xpord3ind 8092* | Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024.) |
| ⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Po 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝑆 Fr 𝐵 & ⊢ 𝑆 Po 𝐵 & ⊢ 𝑆 Se 𝐵 & ⊢ 𝑇 Fr 𝐶 & ⊢ 𝑇 Po 𝐶 & ⊢ 𝑇 Se 𝐶 & ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝜆) | ||
| Theorem | orderseqlem 8093* | Lemma for poseq 8094 and soseq 8095. The function value of a sequence is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} ⇒ ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) | ||
| Theorem | poseq 8094* | A partial ordering of ordinal sequences. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ 𝑅 Po (𝐴 ∪ {∅}) & ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} & ⊢ 𝑆 = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)))} ⇒ ⊢ 𝑆 Po 𝐹 | ||
| Theorem | soseq 8095* | A linear ordering of ordinal sequences. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ 𝑅 Or (𝐴 ∪ {∅}) & ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} & ⊢ 𝑆 = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)))} & ⊢ ¬ ∅ ∈ 𝐴 ⇒ ⊢ 𝑆 Or 𝐹 | ||
In this section, the support of functions is defined and corresponding theorems are provided. Since basic properties (see suppval 8098) are based on the Axiom of Union (usage of dmexg 7837), these definition and theorems cannot be provided earlier. Until April 2019, the support of a function was represented by the expression (◡𝑅 “ (V ∖ {𝑍})) (see suppimacnv 8110). The theorems which are based on this representation and which are provided in previous sections could be moved into this section to have all related theorems in one section, although they do not depend on the Axiom of Union. This was possible because they are not used before. The current theorems differ from the original ones by requiring that the classes representing the "function" (or its "domain") and the "zero element" are sets. Actually, this does not cause any problem (until now). | ||
| Syntax | csupp 8096 | Extend class definition to include the support of functions. |
| class supp | ||
| Definition | df-supp 8097* | Define the support of a function against a "zero" value. According to Wikipedia ("Support (mathematics)", 31-Mar-2019, https://en.wikipedia.org/wiki/Support_(mathematics)) "In mathematics, the support of a real-valued function f is the subset of the domain containing those elements which are not mapped to zero." and "The notion of support also extends in a natural way to functions taking values in more general sets than R [the real numbers] and to other objects." The following definition allows for such extensions, being applicable for any sets (which usually are functions) and any element (even not necessarily from the range of the function) regarded as "zero". (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.) |
| ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | ||
| Theorem | suppval 8098* | The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) | ||
| Theorem | supp0prc 8099 | The support of a class is empty if either the class or the "zero" is a proper class. (Contributed by AV, 28-May-2019.) |
| ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) | ||
| Theorem | suppvalbr 8100* | The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |