Home | Metamath
Proof Explorer Theorem List (p. 81 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29276) |
Hilbert Space Explorer
(29277-30799) |
Users' Mathboxes
(30800-46482) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | suppss 8001* | Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 5-Aug-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | ||
Theorem | suppssOLD 8002* | Obsolete version of suppss 8001 as of 5-Aug-2024. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | ||
Theorem | suppssr 8003 | A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) | ||
Theorem | suppssrg 8004 | A function is zero outside its support. Version of suppssr 8003 avoiding ax-rep 5214 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) | ||
Theorem | suppssov1 8005* | Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) | ||
Theorem | suppssof1 8006* | Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) & ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) & ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) ⊆ 𝐿) | ||
Theorem | suppss2 8007* | Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) | ||
Theorem | suppsssn 8008* | Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) | ||
Theorem | suppssfv 8009* | Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) & ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) supp 𝑍) ⊆ 𝐿) | ||
Theorem | suppofssd 8010 | Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → (𝑍𝑋𝑍) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) | ||
Theorem | suppofss1d 8011* | Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍𝑋𝑥) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
Theorem | suppofss2d 8012* | Condition for the support of a function operation to be a subset of the support of the right function term. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝑋𝑍) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)) | ||
Theorem | suppco 8013 | The support of the composition of two functions is the inverse image by the inner function of the support of the outer function. (Contributed by AV, 30-May-2019.) Extract this statement from the proof of supp0cosupp0 8015. (Revised by SN, 15-Sep-2023.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | ||
Theorem | suppcoss 8014 | The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv 8009, which has a sethood condition on 𝐴 instead of 𝐵. (Contributed by SN, 25-May-2024.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌)) | ||
Theorem | supp0cosupp0 8015 | The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) | ||
Theorem | imacosupp 8016 | The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) | ||
The following theorems are about maps-to operations (see df-mpo 7276) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 7362, ovmpox 7420 and fmpox 7900). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short. | ||
Theorem | opeliunxp2f 8017* | Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 5746. (Contributed by AV, 25-Oct-2020.) |
⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) ⇒ ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) | ||
Theorem | mpoxeldm 8018* | If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) | ||
Theorem | mpoxneldm 8019* | If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) | ||
Theorem | mpoxopn0yelv 8020* | If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) | ||
Theorem | mpoxopynvov0g 8021* | If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
Theorem | mpoxopxnop0 8022* | If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) | ||
Theorem | mpoxopx0ov0 8023* | If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is the empty set, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (∅𝐹𝐾) = ∅ | ||
Theorem | mpoxopxprcov0 8024* | If the components of the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, are not sets, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
Theorem | mpoxopynvov0 8025* | If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
Theorem | mpoxopoveq 8026* | Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | ||
Theorem | mpoxopovel 8027* | Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | ||
Theorem | mpoxopoveqd 8028* | Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) & ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) & ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} = ∅) ⇒ ⊢ (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | ||
Theorem | brovex 8029* | A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) & ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸)) ⇒ ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | ||
Theorem | brovmpoex 8030* | A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) ⇒ ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | ||
Theorem | sprmpod 8031* | The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.) |
⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) & ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) & ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) & ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) ⇒ ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) | ||
Syntax | ctpos 8032 | The transposition of a function. |
class tpos 𝐹 | ||
Definition | df-tpos 8033* | Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(𝑥, 𝑦) = 𝐹(𝑦, 𝑥). (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
Theorem | tposss 8034 | Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) | ||
Theorem | tposeq 8035 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | ||
Theorem | tposeqd 8036 | Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) | ||
Theorem | tposssxp 8037 | The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | ||
Theorem | reltpos 8038 | The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ Rel tpos 𝐹 | ||
Theorem | brtpos2 8039 | Value of the transposition at a pair 〈𝐴, 𝐵〉. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) | ||
Theorem | brtpos0 8040 | The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows us to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 8042. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) | ||
Theorem | reldmtpos 8041 | Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | ||
Theorem | brtpos 8042 | The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
Theorem | ottpos 8043 | The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) | ||
Theorem | relbrtpos 8044 | The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ (Rel 𝐹 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
Theorem | dmtpos 8045 | The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | ||
Theorem | rntpos 8046 | The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | ||
Theorem | tposexg 8047 | The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | ||
Theorem | ovtpos 8048 | The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) | ||
Theorem | tposfun 8049 | The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Fun 𝐹 → Fun tpos 𝐹) | ||
Theorem | dftpos2 8050* | Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) | ||
Theorem | dftpos3 8051* | Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 5598. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → tpos 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 〈𝑦, 𝑥〉𝐹𝑧}) | ||
Theorem | dftpos4 8052* | Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
Theorem | tpostpos 8053 | Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.) |
⊢ tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V)) | ||
Theorem | tpostpos2 8054 | Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.) |
⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) | ||
Theorem | tposfn2 8055 | The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | ||
Theorem | tposfo2 8056 | Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) | ||
Theorem | tposf2 8057 | The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) | ||
Theorem | tposf12 8058 | Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) | ||
Theorem | tposf1o2 8059 | Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) | ||
Theorem | tposfo 8060 | The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) | ||
Theorem | tposf 8061 | The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) | ||
Theorem | tposfn 8062 | Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴)) | ||
Theorem | tpos0 8063 | Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
⊢ tpos ∅ = ∅ | ||
Theorem | tposco 8064 | Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) | ||
Theorem | tpossym 8065* | Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) | ||
Theorem | tposeqi 8066 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = 𝐺 ⇒ ⊢ tpos 𝐹 = tpos 𝐺 | ||
Theorem | tposex 8067 | A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 ∈ V ⇒ ⊢ tpos 𝐹 ∈ V | ||
Theorem | nftpos 8068 | Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥tpos 𝐹 | ||
Theorem | tposoprab 8069* | Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ 𝜑} | ||
Theorem | tposmpo 8070* | Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | tposconst 8071 | The transposition of a constant operation using the relation representation. (Contributed by SO, 11-Jul-2018.) |
⊢ tpos ((𝐴 × 𝐵) × {𝐶}) = ((𝐵 × 𝐴) × {𝐶}) | ||
Syntax | ccur 8072 | Extend class notation to include the currying function. |
class curry 𝐴 | ||
Syntax | cunc 8073 | Extend class notation to include the uncurrying function. |
class uncurry 𝐴 | ||
Definition | df-cur 8074* | Define the currying of 𝐹, which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧}) | ||
Definition | df-unc 8075* | Define the uncurrying of 𝐹, which takes a function producing functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ uncurry 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐹‘𝑥)𝑧} | ||
Theorem | mpocurryd 8076* | The currying of an operation given in maps-to notation, splitting the operation (function of two arguments) into a function of the first argument, producing a function over the second argument. (Contributed by AV, 27-Oct-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → curry 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) | ||
Theorem | mpocurryvald 8077* | The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | fvmpocurryd 8078* | The value of the value of a curried operation given in maps-to notation is the operation value of the original operation. (Contributed by AV, 27-Oct-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) ⇒ ⊢ (𝜑 → ((curry 𝐹‘𝐴)‘𝐵) = (𝐴𝐹𝐵)) | ||
Syntax | cund 8079 | Extend class notation with undefined value function. |
class Undef | ||
Definition | df-undef 8080 | Define the undefined value function, whose value at set 𝑠 is guaranteed not to be a member of 𝑠 (see pwuninel 8082). (Contributed by NM, 15-Sep-2011.) |
⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) | ||
Theorem | pwuninel2 8081 | Direct proof of pwuninel 8082 avoiding functions and thus several ZF axioms. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | ||
Theorem | pwuninel 8082 | The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. See also pwuninel2 8081. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 | ||
Theorem | undefval 8083 | Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8085 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.) |
⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) | ||
Theorem | undefnel2 8084 | The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011.) |
⊢ (𝑆 ∈ 𝑉 → ¬ (Undef‘𝑆) ∈ 𝑆) | ||
Theorem | undefnel 8085 | The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011.) |
⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ∉ 𝑆) | ||
Theorem | undefne0 8086 | The undefined value generated from a set is not empty. (Contributed by NM, 3-Sep-2018.) |
⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ≠ ∅) | ||
Syntax | cfrecs 8087 | Declare the syntax for the well-founded recursion generator. See df-frecs 8088. |
class frecs(𝑅, 𝐴, 𝐹) | ||
Definition | df-frecs 8088* | This is the definition for the well-founded recursion generator. Similar to df-wrecs 8119 and df-recs 8193, it is a direct definition form of normally recursive relationships. Unlike the former two definitions, it only requires a well-founded set-like relationship for its properties, not a well-ordered relationship. This proof requires either a partial order or the axiom of infinity. We develop the theorems twice, once with a partial order and once without. The second development occurs later in the database, after ax-inf 9374 has been introduced. (Contributed by Scott Fenton, 23-Dec-2021.) |
⊢ frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | ||
Theorem | frecseq123 8089 | Equality theorem for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → frecs(𝑅, 𝐴, 𝐹) = frecs(𝑆, 𝐵, 𝐺)) | ||
Theorem | nffrecs 8090 | Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) | ||
Theorem | csbfrecsg 8091 | Move class substitution in and out of the well-founded recursive function generator. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, 𝐹) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) | ||
Theorem | fpr3g 8092* | Functions defined by well-founded recursion over a partial order are identical up to relation, domain, and characteristic function. This version of frr3g 9515 does not require infinity. (Contributed by Scott Fenton, 24-Aug-2022.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺) | ||
Theorem | frrlem1 8093* | Lemma for well-founded recursion. The final item we are interested in is the union of acceptable functions 𝐵. This lemma just changes bound variables for later use. (Contributed by Paul Chapman, 21-Apr-2012.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} | ||
Theorem | frrlem2 8094* | Lemma for well-founded recursion. An acceptable function is a function. (Contributed by Paul Chapman, 21-Apr-2012.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) | ||
Theorem | frrlem3 8095* | Lemma for well-founded recursion. An acceptable function's domain is a subset of 𝐴. (Contributed by Paul Chapman, 21-Apr-2012.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) | ||
Theorem | frrlem4 8096* | Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) | ||
Theorem | frrlem5 8097* | Lemma for well-founded recursion. State the well-founded recursion generator in terms of the acceptable functions. (Contributed by Scott Fenton, 27-Aug-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ 𝐹 = ∪ 𝐵 | ||
Theorem | frrlem6 8098* | Lemma for well-founded recursion. The well-founded recursion generator is a relationship. (Contributed by Scott Fenton, 27-Aug-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Rel 𝐹 | ||
Theorem | frrlem7 8099* | Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of 𝐴. (Contributed by Scott Fenton, 27-Aug-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
Theorem | frrlem8 8100* | Lemma for well-founded recursion. dom 𝐹 is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |