| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version | ||
| Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2570 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
| 2 | eldmg 5852 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
| 3 | 1, 2 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
| 4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
| 5 | tz6.12-2 6828 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 7 | fvprc 6832 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 Vcvv 3444 ∅c0 4292 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-dm 5641 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: ndmfvrcl 6876 elfvdm 6877 nfvres 6881 fvfundmfvn0 6883 0fv 6884 funfv 6930 fvun1 6934 fvco4i 6944 fvmpti 6949 mptrcl 6959 fvmptss 6962 fvmptex 6964 fvmptnf 6972 fvmptss2 6976 elfvmptrab1 6978 fvopab4ndm 6980 f0cli 7052 funiunfv 7204 funeldmb 7316 ovprc 7407 oprssdm 7550 nssdmovg 7551 ndmovg 7552 1st2val 7975 2nd2val 7976 brovpreldm 8045 soseq 8115 smofvon2 8302 rdgsucmptnf 8374 frsucmptn 8384 brwitnlem 8448 undifixp 8884 r1tr 9705 rankvaln 9728 cardidm 9888 carden2a 9895 carden2b 9896 carddomi2 9899 sdomsdomcardi 9900 pm54.43lem 9929 alephcard 9999 alephnbtwn 10000 alephgeom 10011 cfub 10178 cardcf 10181 cflecard 10182 cfle 10183 cflim2 10192 cfidm 10204 itunisuc 10348 itunitc1 10349 ituniiun 10351 alephadd 10506 alephreg 10511 pwcfsdom 10512 cfpwsdom 10513 adderpq 10885 mulerpq 10886 uzssz 12790 ltweuz 13902 wrdsymb0 14490 lsw0 14506 swrd00 14585 swrd0 14599 pfx00 14615 pfx0 14616 sumz 15664 sumss 15666 sumnul 15702 prod1 15886 prodss 15889 divsfval 17486 cidpropd 17647 lubval 18291 glbval 18304 joinval 18312 meetval 18326 gsumpropd2lem 18582 mulgfval 18977 mpfrcl 21968 iscnp2 23102 setsmstopn 24342 tngtopn 24514 dvbsss 25779 perfdvf 25780 dchrrcl 27127 nofv 27545 sltres 27550 noseponlem 27552 noextenddif 27556 noextendlt 27557 noextendgt 27558 nolesgn2ores 27560 nogesgn1ores 27562 fvnobday 27566 nosepdmlem 27571 nosepssdm 27574 nosupbnd1lem3 27598 nosupbnd1lem5 27600 nosupbnd2lem1 27603 noinfbnd1lem3 27613 noinfbnd1lem5 27615 noinfbnd2lem1 27618 newval 27739 leftval 27747 rightval 27748 lltropt 27760 madess 27764 oldssmade 27765 lrold 27784 structiedg0val 28925 snstriedgval 28941 rgrx0nd 29498 vsfval 30535 dmadjrnb 31808 hmdmadj 31842 rdgprc0 35754 fullfunfv 35908 linedegen 36104 bj-inftyexpitaudisj 37166 bj-inftyexpidisj 37171 bj-fvimacnv0 37247 dibvalrel 41130 dicvalrelN 41152 dihvalrel 41246 itgocn 43126 fpwfvss 43374 r1rankcld 44193 grur1cld 44194 uz0 45381 climfveq 45640 climfveqf 45651 afv2ndeffv0 47234 fvmptrabdm 47267 fvconstr 48823 fvconstrn0 48824 fvconstr2 48825 fvconst0ci 48852 fvconstdomi 48853 ipolub00 48954 oppfrcl 49090 initopropdlemlem 49201 initopropd 49205 termopropd 49206 zeroopropd 49207 fucofvalne 49287 |
| Copyright terms: Public domain | W3C validator |