![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version |
Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2580 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
2 | eldmg 5923 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
3 | 1, 2 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
5 | tz6.12-2 6908 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
7 | fvprc 6912 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃!weu 2571 Vcvv 3488 ∅c0 4352 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: ndmfvrcl 6956 elfvdm 6957 nfvres 6961 fvfundmfvn0 6963 0fv 6964 funfv 7009 fvun1 7013 fvco4i 7023 fvmpti 7028 mptrcl 7038 fvmptss 7041 fvmptex 7043 fvmptnf 7051 fvmptss2 7055 elfvmptrab1 7057 fvopab4ndm 7059 f0cli 7132 funiunfv 7285 funeldmb 7395 ovprc 7486 oprssdm 7631 nssdmovg 7632 ndmovg 7633 1st2val 8058 2nd2val 8059 brovpreldm 8130 soseq 8200 smofvon2 8412 rdgsucmptnf 8485 frsucmptn 8495 brwitnlem 8563 undifixp 8992 r1tr 9845 rankvaln 9868 cardidm 10028 carden2a 10035 carden2b 10036 carddomi2 10039 sdomsdomcardi 10040 pm54.43lem 10069 alephcard 10139 alephnbtwn 10140 alephgeom 10151 cfub 10318 cardcf 10321 cflecard 10322 cfle 10323 cflim2 10332 cfidm 10344 itunisuc 10488 itunitc1 10489 ituniiun 10491 alephadd 10646 alephreg 10651 pwcfsdom 10652 cfpwsdom 10653 adderpq 11025 mulerpq 11026 uzssz 12924 ltweuz 14012 wrdsymb0 14597 lsw0 14613 swrd00 14692 swrd0 14706 pfx00 14722 pfx0 14723 sumz 15770 sumss 15772 sumnul 15808 prod1 15992 prodss 15995 divsfval 17607 cidpropd 17768 lubval 18426 glbval 18439 joinval 18447 meetval 18461 gsumpropd2lem 18717 mulgfval 19109 mpfrcl 22132 iscnp2 23268 setsmstopn 24511 tngtopn 24692 dvbsss 25957 perfdvf 25958 dchrrcl 27302 nofv 27720 sltres 27725 noseponlem 27727 noextenddif 27731 noextendlt 27732 noextendgt 27733 nolesgn2ores 27735 nogesgn1ores 27737 fvnobday 27741 nosepdmlem 27746 nosepssdm 27749 nosupbnd1lem3 27773 nosupbnd1lem5 27775 nosupbnd2lem1 27778 noinfbnd1lem3 27788 noinfbnd1lem5 27790 noinfbnd2lem1 27793 newval 27912 leftval 27920 rightval 27921 lltropt 27929 madess 27933 oldssmade 27934 lrold 27953 structiedg0val 29057 snstriedgval 29073 rgrx0nd 29630 vsfval 30665 dmadjrnb 31938 hmdmadj 31972 rdgprc0 35757 fullfunfv 35911 linedegen 36107 bj-inftyexpitaudisj 37171 bj-inftyexpidisj 37176 bj-fvimacnv0 37252 dibvalrel 41120 dicvalrelN 41142 dihvalrel 41236 itgocn 43121 fpwfvss 43374 r1rankcld 44200 grur1cld 44201 uz0 45327 climfveq 45590 climfveqf 45601 afv2ndeffv0 47175 fvmptrabdm 47208 fvconstr 48569 fvconstrn0 48570 fvconstr2 48571 fvconst0ci 48572 fvconstdomi 48573 ipolub00 48665 |
Copyright terms: Public domain | W3C validator |