Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version |
Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2575 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
2 | eldmg 5840 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
3 | 1, 2 | syl5ibr 245 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
5 | tz6.12-2 6813 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
7 | fvprc 6817 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃!weu 2566 Vcvv 3441 ∅c0 4269 class class class wbr 5092 dom cdm 5620 ‘cfv 6479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-dm 5630 df-iota 6431 df-fv 6487 |
This theorem is referenced by: ndmfvrcl 6861 elfvdm 6862 nfvres 6866 fvfundmfvn0 6868 0fv 6869 funfv 6911 fvun1 6915 fvco4i 6925 fvmpti 6930 mptrcl 6940 fvmptss 6943 fvmptex 6945 fvmptnf 6953 fvmptss2 6956 elfvmptrab1 6958 fvopab4ndm 6960 f0cli 7030 funiunfv 7177 funeldmb 7286 ovprc 7375 oprssdm 7515 nssdmovg 7516 ndmovg 7517 1st2val 7927 2nd2val 7928 brovpreldm 7997 soseq 8046 smofvon2 8257 rdgsucmptnf 8330 frsucmptn 8340 brwitnlem 8408 undifixp 8793 r1tr 9633 rankvaln 9656 cardidm 9816 carden2a 9823 carden2b 9824 carddomi2 9827 sdomsdomcardi 9828 pm54.43lem 9857 alephcard 9927 alephnbtwn 9928 alephgeom 9939 cfub 10106 cardcf 10109 cflecard 10110 cfle 10111 cflim2 10120 cfidm 10132 itunisuc 10276 itunitc1 10277 ituniiun 10279 alephadd 10434 alephreg 10439 pwcfsdom 10440 cfpwsdom 10441 adderpq 10813 mulerpq 10814 uzssz 12704 ltweuz 13782 wrdsymb0 14352 lsw0 14368 swrd00 14455 swrd0 14469 pfx00 14485 pfx0 14486 sumz 15533 sumss 15535 sumnul 15571 prod1 15753 prodss 15756 divsfval 17355 cidpropd 17516 lubval 18171 glbval 18184 joinval 18192 meetval 18206 gsumpropd2lem 18460 mulgfval 18798 mpfrcl 21401 iscnp2 22496 setsmstopn 23739 tngtopn 23920 dvbsss 25172 perfdvf 25173 dchrrcl 26494 nofv 26911 sltres 26916 noseponlem 26918 noextenddif 26922 noextendlt 26923 noextendgt 26924 nolesgn2ores 26926 nogesgn1ores 26928 fvnobday 26932 nosepdmlem 26937 nosepssdm 26940 nosupbnd1lem3 26964 nosupbnd1lem5 26966 nosupbnd2lem1 26969 noinfbnd1lem3 26979 noinfbnd1lem5 26981 noinfbnd2lem1 26984 structiedg0val 27681 snstriedgval 27697 rgrx0nd 28250 vsfval 29283 dmadjrnb 30556 hmdmadj 30590 rdgprc0 34052 newval 34135 leftval 34143 rightval 34144 madess 34155 oldssmade 34156 lrold 34173 fullfunfv 34345 linedegen 34541 bj-inftyexpitaudisj 35489 bj-inftyexpidisj 35494 bj-fvimacnv0 35570 dibvalrel 39439 dicvalrelN 39461 dihvalrel 39555 itgocn 41260 fpwfvss 41349 r1rankcld 42178 grur1cld 42179 uz0 43295 climfveq 43554 climfveqf 43565 afv2ndeffv0 45111 fvmptrabdm 45144 fvconstr 46542 fvconstrn0 46543 fvconstr2 46544 fvconst0ci 46545 fvconstdomi 46546 ipolub00 46638 |
Copyright terms: Public domain | W3C validator |