Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version |
Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2577 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
2 | eldmg 5796 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
3 | 1, 2 | syl5ibr 245 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
5 | tz6.12-2 6745 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
7 | fvprc 6748 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃!weu 2568 Vcvv 3422 ∅c0 4253 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 |
This theorem is referenced by: ndmfvrcl 6787 elfvdm 6788 nfvres 6792 fvfundmfvn0 6794 0fv 6795 funfv 6837 fvun1 6841 fvco4i 6851 fvmpti 6856 mptrcl 6866 fvmptss 6869 fvmptex 6871 fvmptnf 6879 fvmptss2 6882 elfvmptrab1 6884 fvopab4ndm 6886 f0cli 6956 funiunfv 7103 ovprc 7293 oprssdm 7431 nssdmovg 7432 ndmovg 7433 1st2val 7832 2nd2val 7833 brovpreldm 7900 smofvon2 8158 rdgsucmptnf 8231 frsucmptn 8240 brwitnlem 8299 undifixp 8680 r1tr 9465 rankvaln 9488 cardidm 9648 carden2a 9655 carden2b 9656 carddomi2 9659 sdomsdomcardi 9660 pm54.43lem 9689 alephcard 9757 alephnbtwn 9758 alephgeom 9769 cfub 9936 cardcf 9939 cflecard 9940 cfle 9941 cflim2 9950 cfidm 9962 itunisuc 10106 itunitc1 10107 ituniiun 10109 alephadd 10264 alephreg 10269 pwcfsdom 10270 cfpwsdom 10271 adderpq 10643 mulerpq 10644 uzssz 12532 ltweuz 13609 wrdsymb0 14180 lsw0 14196 swrd00 14285 swrd0 14299 pfx00 14315 pfx0 14316 sumz 15362 sumss 15364 sumnul 15400 prod1 15582 prodss 15585 divsfval 17175 cidpropd 17336 lubval 17989 glbval 18002 joinval 18010 meetval 18024 gsumpropd2lem 18278 mulgfval 18617 mpfrcl 21205 iscnp2 22298 setsmstopn 23539 tngtopn 23720 dvbsss 24971 perfdvf 24972 dchrrcl 26293 structiedg0val 27295 snstriedgval 27311 rgrx0nd 27864 vsfval 28896 dmadjrnb 30169 hmdmadj 30203 funeldmb 33643 rdgprc0 33675 soseq 33730 nofv 33787 sltres 33792 noseponlem 33794 noextenddif 33798 noextendlt 33799 noextendgt 33800 nolesgn2ores 33802 nogesgn1ores 33804 fvnobday 33808 nosepdmlem 33813 nosepssdm 33816 nosupbnd1lem3 33840 nosupbnd1lem5 33842 nosupbnd2lem1 33845 noinfbnd1lem3 33855 noinfbnd1lem5 33857 noinfbnd2lem1 33860 newval 33966 leftval 33974 rightval 33975 madess 33986 oldssmade 33987 lrold 34004 fullfunfv 34176 linedegen 34372 bj-inftyexpitaudisj 35303 bj-inftyexpidisj 35308 bj-fvimacnv0 35384 dibvalrel 39104 dicvalrelN 39126 dihvalrel 39220 itgocn 40905 r1rankcld 41738 grur1cld 41739 uz0 42842 climfveq 43100 climfveqf 43111 afv2ndeffv0 44639 fvmptrabdm 44672 fvconstr 46071 fvconstrn0 46072 fvconstr2 46073 fvconst0ci 46074 fvconstdomi 46075 ipolub00 46167 |
Copyright terms: Public domain | W3C validator |