| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version | ||
| Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2572 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
| 2 | eldmg 5833 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
| 3 | 1, 2 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
| 4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
| 5 | tz6.12-2 6804 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 7 | fvprc 6809 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 ∅c0 4278 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-dm 5621 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: ndmfvrcl 6850 elfvdm 6851 nfvres 6855 fvfundmfvn0 6857 0fv 6858 funfv 6904 fvun1 6908 fvco4i 6918 fvmpti 6923 mptrcl 6933 fvmptss 6936 fvmptex 6938 fvmptnf 6946 fvmptss2 6950 elfvmptrab1 6952 fvopab4ndm 6954 f0cli 7026 funiunfv 7177 funeldmb 7288 ovprc 7379 oprssdm 7522 nssdmovg 7523 ndmovg 7524 1st2val 7944 2nd2val 7945 brovpreldm 8014 soseq 8084 smofvon2 8271 rdgsucmptnf 8343 frsucmptn 8353 brwitnlem 8417 undifixp 8853 r1tr 9664 rankvaln 9687 cardidm 9847 carden2a 9854 carden2b 9855 carddomi2 9858 sdomsdomcardi 9859 pm54.43lem 9888 alephcard 9956 alephnbtwn 9957 alephgeom 9968 cfub 10135 cardcf 10138 cflecard 10139 cfle 10140 cflim2 10149 cfidm 10161 itunisuc 10305 itunitc1 10306 ituniiun 10308 alephadd 10463 alephreg 10468 pwcfsdom 10469 cfpwsdom 10470 adderpq 10842 mulerpq 10843 uzssz 12748 ltweuz 13863 wrdsymb0 14451 lsw0 14467 swrd00 14547 swrd0 14561 pfx00 14577 pfx0 14578 sumz 15624 sumss 15626 sumnul 15662 prod1 15846 prodss 15849 divsfval 17446 cidpropd 17611 lubval 18255 glbval 18268 joinval 18276 meetval 18290 gsumpropd2lem 18582 mulgfval 18977 mpfrcl 22015 iscnp2 23149 setsmstopn 24388 tngtopn 24560 dvbsss 25825 perfdvf 25826 dchrrcl 27173 nofv 27591 sltres 27596 noseponlem 27598 noextenddif 27602 noextendlt 27603 noextendgt 27604 nolesgn2ores 27606 nogesgn1ores 27608 fvnobday 27612 nosepdmlem 27617 nosepssdm 27620 nosupbnd1lem3 27644 nosupbnd1lem5 27646 nosupbnd2lem1 27649 noinfbnd1lem3 27659 noinfbnd1lem5 27661 noinfbnd2lem1 27664 newval 27791 leftval 27799 rightval 27800 lltropt 27812 madess 27816 oldssmade 27817 oldss 27818 lrold 27837 structiedg0val 28995 snstriedgval 29011 rgrx0nd 29568 vsfval 30605 dmadjrnb 31878 hmdmadj 31912 r1wf 35099 rdgprc0 35827 fullfunfv 35981 linedegen 36177 bj-inftyexpitaudisj 37239 bj-inftyexpidisj 37244 bj-fvimacnv0 37320 dibvalrel 41202 dicvalrelN 41224 dihvalrel 41318 itgocn 43197 fpwfvss 43445 r1rankcld 44264 grur1cld 44265 uz0 45450 climfveq 45707 climfveqf 45718 afv2ndeffv0 47291 fvmptrabdm 47324 fvconstr 48893 fvconstrn0 48894 fvconstr2 48895 fvconst0ci 48922 fvconstdomi 48923 ipolub00 49024 oppfrcl 49160 initopropdlemlem 49271 initopropd 49275 termopropd 49276 zeroopropd 49277 fucofvalne 49357 |
| Copyright terms: Public domain | W3C validator |