Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version |
Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2578 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
2 | eldmg 5810 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
3 | 1, 2 | syl5ibr 245 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
5 | tz6.12-2 6771 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
7 | fvprc 6775 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∃wex 1782 ∈ wcel 2107 ∃!weu 2569 Vcvv 3433 ∅c0 4257 class class class wbr 5075 dom cdm 5590 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-dm 5600 df-iota 6395 df-fv 6445 |
This theorem is referenced by: ndmfvrcl 6814 elfvdm 6815 nfvres 6819 fvfundmfvn0 6821 0fv 6822 funfv 6864 fvun1 6868 fvco4i 6878 fvmpti 6883 mptrcl 6893 fvmptss 6896 fvmptex 6898 fvmptnf 6906 fvmptss2 6909 elfvmptrab1 6911 fvopab4ndm 6913 f0cli 6983 funiunfv 7130 ovprc 7322 oprssdm 7462 nssdmovg 7463 ndmovg 7464 1st2val 7868 2nd2val 7869 brovpreldm 7938 smofvon2 8196 rdgsucmptnf 8269 frsucmptn 8279 brwitnlem 8346 undifixp 8731 r1tr 9543 rankvaln 9566 cardidm 9726 carden2a 9733 carden2b 9734 carddomi2 9737 sdomsdomcardi 9738 pm54.43lem 9767 alephcard 9835 alephnbtwn 9836 alephgeom 9847 cfub 10014 cardcf 10017 cflecard 10018 cfle 10019 cflim2 10028 cfidm 10040 itunisuc 10184 itunitc1 10185 ituniiun 10187 alephadd 10342 alephreg 10347 pwcfsdom 10348 cfpwsdom 10349 adderpq 10721 mulerpq 10722 uzssz 12612 ltweuz 13690 wrdsymb0 14261 lsw0 14277 swrd00 14366 swrd0 14380 pfx00 14396 pfx0 14397 sumz 15443 sumss 15445 sumnul 15481 prod1 15663 prodss 15666 divsfval 17267 cidpropd 17428 lubval 18083 glbval 18096 joinval 18104 meetval 18118 gsumpropd2lem 18372 mulgfval 18711 mpfrcl 21304 iscnp2 22399 setsmstopn 23642 tngtopn 23823 dvbsss 25075 perfdvf 25076 dchrrcl 26397 structiedg0val 27401 snstriedgval 27417 rgrx0nd 27970 vsfval 29004 dmadjrnb 30277 hmdmadj 30311 funeldmb 33746 rdgprc0 33778 soseq 33812 nofv 33869 sltres 33874 noseponlem 33876 noextenddif 33880 noextendlt 33881 noextendgt 33882 nolesgn2ores 33884 nogesgn1ores 33886 fvnobday 33890 nosepdmlem 33895 nosepssdm 33898 nosupbnd1lem3 33922 nosupbnd1lem5 33924 nosupbnd2lem1 33927 noinfbnd1lem3 33937 noinfbnd1lem5 33939 noinfbnd2lem1 33942 newval 34048 leftval 34056 rightval 34057 madess 34068 oldssmade 34069 lrold 34086 fullfunfv 34258 linedegen 34454 bj-inftyexpitaudisj 35385 bj-inftyexpidisj 35390 bj-fvimacnv0 35466 dibvalrel 39184 dicvalrelN 39206 dihvalrel 39300 itgocn 40996 r1rankcld 41856 grur1cld 41857 uz0 42959 climfveq 43217 climfveqf 43228 afv2ndeffv0 44763 fvmptrabdm 44796 fvconstr 46194 fvconstrn0 46195 fvconstr2 46196 fvconst0ci 46197 fvconstdomi 46198 ipolub00 46290 |
Copyright terms: Public domain | W3C validator |