![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version |
Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2572 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
2 | eldmg 5899 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
3 | 1, 2 | imbitrrid 245 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
5 | tz6.12-2 6880 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
7 | fvprc 6884 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃!weu 2563 Vcvv 3475 ∅c0 4323 class class class wbr 5149 dom cdm 5677 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-dm 5687 df-iota 6496 df-fv 6552 |
This theorem is referenced by: ndmfvrcl 6928 elfvdm 6929 nfvres 6933 fvfundmfvn0 6935 0fv 6936 funfv 6979 fvun1 6983 fvco4i 6993 fvmpti 6998 mptrcl 7008 fvmptss 7011 fvmptex 7013 fvmptnf 7021 fvmptss2 7024 elfvmptrab1 7026 fvopab4ndm 7028 f0cli 7100 funiunfv 7247 funeldmb 7356 ovprc 7447 oprssdm 7588 nssdmovg 7589 ndmovg 7590 1st2val 8003 2nd2val 8004 brovpreldm 8075 soseq 8145 smofvon2 8356 rdgsucmptnf 8429 frsucmptn 8439 brwitnlem 8507 undifixp 8928 r1tr 9771 rankvaln 9794 cardidm 9954 carden2a 9961 carden2b 9962 carddomi2 9965 sdomsdomcardi 9966 pm54.43lem 9995 alephcard 10065 alephnbtwn 10066 alephgeom 10077 cfub 10244 cardcf 10247 cflecard 10248 cfle 10249 cflim2 10258 cfidm 10270 itunisuc 10414 itunitc1 10415 ituniiun 10417 alephadd 10572 alephreg 10577 pwcfsdom 10578 cfpwsdom 10579 adderpq 10951 mulerpq 10952 uzssz 12843 ltweuz 13926 wrdsymb0 14499 lsw0 14515 swrd00 14594 swrd0 14608 pfx00 14624 pfx0 14625 sumz 15668 sumss 15670 sumnul 15706 prod1 15888 prodss 15891 divsfval 17493 cidpropd 17654 lubval 18309 glbval 18322 joinval 18330 meetval 18344 gsumpropd2lem 18598 mulgfval 18952 mpfrcl 21648 iscnp2 22743 setsmstopn 23986 tngtopn 24167 dvbsss 25419 perfdvf 25420 dchrrcl 26743 nofv 27160 sltres 27165 noseponlem 27167 noextenddif 27171 noextendlt 27172 noextendgt 27173 nolesgn2ores 27175 nogesgn1ores 27177 fvnobday 27181 nosepdmlem 27186 nosepssdm 27189 nosupbnd1lem3 27213 nosupbnd1lem5 27215 nosupbnd2lem1 27218 noinfbnd1lem3 27228 noinfbnd1lem5 27230 noinfbnd2lem1 27233 newval 27350 leftval 27358 rightval 27359 lltropt 27367 madess 27371 oldssmade 27372 lrold 27391 structiedg0val 28282 snstriedgval 28298 rgrx0nd 28851 vsfval 29886 dmadjrnb 31159 hmdmadj 31193 rdgprc0 34765 fullfunfv 34919 linedegen 35115 bj-inftyexpitaudisj 36086 bj-inftyexpidisj 36091 bj-fvimacnv0 36167 dibvalrel 40034 dicvalrelN 40056 dihvalrel 40150 itgocn 41906 fpwfvss 42163 r1rankcld 42990 grur1cld 42991 uz0 44122 climfveq 44385 climfveqf 44396 afv2ndeffv0 45968 fvmptrabdm 46001 fvconstr 47522 fvconstrn0 47523 fvconstr2 47524 fvconst0ci 47525 fvconstdomi 47526 ipolub00 47618 |
Copyright terms: Public domain | W3C validator |