![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version |
Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2575 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
2 | eldmg 5912 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
3 | 1, 2 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
5 | tz6.12-2 6895 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
7 | fvprc 6899 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∃!weu 2566 Vcvv 3478 ∅c0 4339 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 |
This theorem is referenced by: ndmfvrcl 6943 elfvdm 6944 nfvres 6948 fvfundmfvn0 6950 0fv 6951 funfv 6996 fvun1 7000 fvco4i 7010 fvmpti 7015 mptrcl 7025 fvmptss 7028 fvmptex 7030 fvmptnf 7038 fvmptss2 7042 elfvmptrab1 7044 fvopab4ndm 7046 f0cli 7118 funiunfv 7268 funeldmb 7379 ovprc 7469 oprssdm 7614 nssdmovg 7615 ndmovg 7616 1st2val 8041 2nd2val 8042 brovpreldm 8113 soseq 8183 smofvon2 8395 rdgsucmptnf 8468 frsucmptn 8478 brwitnlem 8544 undifixp 8973 r1tr 9814 rankvaln 9837 cardidm 9997 carden2a 10004 carden2b 10005 carddomi2 10008 sdomsdomcardi 10009 pm54.43lem 10038 alephcard 10108 alephnbtwn 10109 alephgeom 10120 cfub 10287 cardcf 10290 cflecard 10291 cfle 10292 cflim2 10301 cfidm 10313 itunisuc 10457 itunitc1 10458 ituniiun 10460 alephadd 10615 alephreg 10620 pwcfsdom 10621 cfpwsdom 10622 adderpq 10994 mulerpq 10995 uzssz 12897 ltweuz 13999 wrdsymb0 14584 lsw0 14600 swrd00 14679 swrd0 14693 pfx00 14709 pfx0 14710 sumz 15755 sumss 15757 sumnul 15793 prod1 15977 prodss 15980 divsfval 17594 cidpropd 17755 lubval 18414 glbval 18427 joinval 18435 meetval 18449 gsumpropd2lem 18705 mulgfval 19100 mpfrcl 22127 iscnp2 23263 setsmstopn 24506 tngtopn 24687 dvbsss 25952 perfdvf 25953 dchrrcl 27299 nofv 27717 sltres 27722 noseponlem 27724 noextenddif 27728 noextendlt 27729 noextendgt 27730 nolesgn2ores 27732 nogesgn1ores 27734 fvnobday 27738 nosepdmlem 27743 nosepssdm 27746 nosupbnd1lem3 27770 nosupbnd1lem5 27772 nosupbnd2lem1 27775 noinfbnd1lem3 27785 noinfbnd1lem5 27787 noinfbnd2lem1 27790 newval 27909 leftval 27917 rightval 27918 lltropt 27926 madess 27930 oldssmade 27931 lrold 27950 structiedg0val 29054 snstriedgval 29070 rgrx0nd 29627 vsfval 30662 dmadjrnb 31935 hmdmadj 31969 rdgprc0 35775 fullfunfv 35929 linedegen 36125 bj-inftyexpitaudisj 37188 bj-inftyexpidisj 37193 bj-fvimacnv0 37269 dibvalrel 41146 dicvalrelN 41168 dihvalrel 41262 itgocn 43153 fpwfvss 43402 r1rankcld 44227 grur1cld 44228 uz0 45362 climfveq 45625 climfveqf 45636 afv2ndeffv0 47210 fvmptrabdm 47243 fvconstr 48686 fvconstrn0 48687 fvconstr2 48688 fvconst0ci 48689 fvconstdomi 48690 ipolub00 48782 |
Copyright terms: Public domain | W3C validator |