| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version | ||
| Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2574 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
| 2 | eldmg 5844 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
| 3 | 1, 2 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
| 4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
| 5 | tz6.12-2 6818 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 7 | fvprc 6823 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃!weu 2565 Vcvv 3437 ∅c0 4282 class class class wbr 5095 dom cdm 5621 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-dm 5631 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: ndmfvrcl 6864 elfvdm 6865 nfvres 6869 fvfundmfvn0 6871 0fv 6872 funfv 6918 fvun1 6922 fvco4i 6932 fvmpti 6937 mptrcl 6947 fvmptss 6950 fvmptex 6952 fvmptnf 6960 fvmptss2 6964 elfvmptrab1 6966 fvopab4ndm 6968 f0cli 7040 funiunfv 7191 funeldmb 7302 ovprc 7393 oprssdm 7536 nssdmovg 7537 ndmovg 7538 1st2val 7958 2nd2val 7959 brovpreldm 8028 soseq 8098 smofvon2 8285 rdgsucmptnf 8357 frsucmptn 8367 brwitnlem 8431 undifixp 8868 r1tr 9680 rankvaln 9703 cardidm 9863 carden2a 9870 carden2b 9871 carddomi2 9874 sdomsdomcardi 9875 pm54.43lem 9904 alephcard 9972 alephnbtwn 9973 alephgeom 9984 cfub 10151 cardcf 10154 cflecard 10155 cfle 10156 cflim2 10165 cfidm 10177 itunisuc 10321 itunitc1 10322 ituniiun 10324 alephadd 10479 alephreg 10484 pwcfsdom 10485 cfpwsdom 10486 adderpq 10858 mulerpq 10859 uzssz 12763 ltweuz 13875 wrdsymb0 14463 lsw0 14479 swrd00 14559 swrd0 14573 pfx00 14589 pfx0 14590 sumz 15636 sumss 15638 sumnul 15674 prod1 15858 prodss 15861 divsfval 17459 cidpropd 17624 lubval 18268 glbval 18281 joinval 18289 meetval 18303 gsumpropd2lem 18595 mulgfval 18990 mpfrcl 22031 iscnp2 23174 setsmstopn 24413 tngtopn 24585 dvbsss 25850 perfdvf 25851 dchrrcl 27198 nofv 27616 sltres 27621 noseponlem 27623 noextenddif 27627 noextendlt 27628 noextendgt 27629 nolesgn2ores 27631 nogesgn1ores 27633 fvnobday 27637 nosepdmlem 27642 nosepssdm 27645 nosupbnd1lem3 27669 nosupbnd1lem5 27671 nosupbnd2lem1 27674 noinfbnd1lem3 27684 noinfbnd1lem5 27686 noinfbnd2lem1 27689 newval 27816 leftval 27824 rightval 27825 lltropt 27837 madess 27841 oldssmade 27842 oldss 27843 lrold 27862 structiedg0val 29021 snstriedgval 29037 rgrx0nd 29594 vsfval 30634 dmadjrnb 31907 hmdmadj 31941 r1wf 35179 rdgprc0 35907 fullfunfv 36063 linedegen 36259 bj-inftyexpitaudisj 37322 bj-inftyexpidisj 37327 bj-fvimacnv0 37403 dibvalrel 41335 dicvalrelN 41357 dihvalrel 41451 itgocn 43321 fpwfvss 43569 r1rankcld 44388 grur1cld 44389 uz0 45572 climfveq 45829 climfveqf 45840 afv2ndeffv0 47422 fvmptrabdm 47455 fvconstr 49023 fvconstrn0 49024 fvconstr2 49025 fvconst0ci 49052 fvconstdomi 49053 ipolub00 49154 oppfrcl 49289 initopropdlemlem 49400 initopropd 49404 termopropd 49405 zeroopropd 49406 fucofvalne 49486 |
| Copyright terms: Public domain | W3C validator |