| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version | ||
| Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2577 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
| 2 | eldmg 5883 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
| 3 | 1, 2 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
| 4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
| 5 | tz6.12-2 6869 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 7 | fvprc 6873 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2568 Vcvv 3464 ∅c0 4313 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-dm 5669 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: ndmfvrcl 6917 elfvdm 6918 nfvres 6922 fvfundmfvn0 6924 0fv 6925 funfv 6971 fvun1 6975 fvco4i 6985 fvmpti 6990 mptrcl 7000 fvmptss 7003 fvmptex 7005 fvmptnf 7013 fvmptss2 7017 elfvmptrab1 7019 fvopab4ndm 7021 f0cli 7093 funiunfv 7245 funeldmb 7357 ovprc 7448 oprssdm 7593 nssdmovg 7594 ndmovg 7595 1st2val 8021 2nd2val 8022 brovpreldm 8093 soseq 8163 smofvon2 8375 rdgsucmptnf 8448 frsucmptn 8458 brwitnlem 8524 undifixp 8953 r1tr 9795 rankvaln 9818 cardidm 9978 carden2a 9985 carden2b 9986 carddomi2 9989 sdomsdomcardi 9990 pm54.43lem 10019 alephcard 10089 alephnbtwn 10090 alephgeom 10101 cfub 10268 cardcf 10271 cflecard 10272 cfle 10273 cflim2 10282 cfidm 10294 itunisuc 10438 itunitc1 10439 ituniiun 10441 alephadd 10596 alephreg 10601 pwcfsdom 10602 cfpwsdom 10603 adderpq 10975 mulerpq 10976 uzssz 12878 ltweuz 13984 wrdsymb0 14572 lsw0 14588 swrd00 14667 swrd0 14681 pfx00 14697 pfx0 14698 sumz 15743 sumss 15745 sumnul 15781 prod1 15965 prodss 15968 divsfval 17566 cidpropd 17727 lubval 18371 glbval 18384 joinval 18392 meetval 18406 gsumpropd2lem 18662 mulgfval 19057 mpfrcl 22048 iscnp2 23182 setsmstopn 24422 tngtopn 24594 dvbsss 25860 perfdvf 25861 dchrrcl 27208 nofv 27626 sltres 27631 noseponlem 27633 noextenddif 27637 noextendlt 27638 noextendgt 27639 nolesgn2ores 27641 nogesgn1ores 27643 fvnobday 27647 nosepdmlem 27652 nosepssdm 27655 nosupbnd1lem3 27679 nosupbnd1lem5 27681 nosupbnd2lem1 27684 noinfbnd1lem3 27694 noinfbnd1lem5 27696 noinfbnd2lem1 27699 newval 27820 leftval 27828 rightval 27829 lltropt 27841 madess 27845 oldssmade 27846 lrold 27865 structiedg0val 29006 snstriedgval 29022 rgrx0nd 29579 vsfval 30619 dmadjrnb 31892 hmdmadj 31926 rdgprc0 35816 fullfunfv 35970 linedegen 36166 bj-inftyexpitaudisj 37228 bj-inftyexpidisj 37233 bj-fvimacnv0 37309 dibvalrel 41187 dicvalrelN 41209 dihvalrel 41303 itgocn 43163 fpwfvss 43411 r1rankcld 44230 grur1cld 44231 uz0 45419 climfveq 45678 climfveqf 45689 afv2ndeffv0 47269 fvmptrabdm 47302 fvconstr 48818 fvconstrn0 48819 fvconstr2 48820 fvconst0ci 48846 fvconstdomi 48847 ipolub00 48947 oppfrcl 49056 initopropdlemlem 49136 initopropd 49140 termopropd 49141 zeroopropd 49142 fucofvalne 49216 |
| Copyright terms: Public domain | W3C validator |