| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version | ||
| Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2570 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
| 2 | eldmg 5845 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
| 3 | 1, 2 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
| 4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
| 5 | tz6.12-2 6814 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 7 | fvprc 6818 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 Vcvv 3438 ∅c0 4286 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: ndmfvrcl 6860 elfvdm 6861 nfvres 6865 fvfundmfvn0 6867 0fv 6868 funfv 6914 fvun1 6918 fvco4i 6928 fvmpti 6933 mptrcl 6943 fvmptss 6946 fvmptex 6948 fvmptnf 6956 fvmptss2 6960 elfvmptrab1 6962 fvopab4ndm 6964 f0cli 7036 funiunfv 7188 funeldmb 7300 ovprc 7391 oprssdm 7534 nssdmovg 7535 ndmovg 7536 1st2val 7959 2nd2val 7960 brovpreldm 8029 soseq 8099 smofvon2 8286 rdgsucmptnf 8358 frsucmptn 8368 brwitnlem 8432 undifixp 8868 r1tr 9691 rankvaln 9714 cardidm 9874 carden2a 9881 carden2b 9882 carddomi2 9885 sdomsdomcardi 9886 pm54.43lem 9915 alephcard 9983 alephnbtwn 9984 alephgeom 9995 cfub 10162 cardcf 10165 cflecard 10166 cfle 10167 cflim2 10176 cfidm 10188 itunisuc 10332 itunitc1 10333 ituniiun 10335 alephadd 10490 alephreg 10495 pwcfsdom 10496 cfpwsdom 10497 adderpq 10869 mulerpq 10870 uzssz 12775 ltweuz 13887 wrdsymb0 14475 lsw0 14491 swrd00 14570 swrd0 14584 pfx00 14600 pfx0 14601 sumz 15648 sumss 15650 sumnul 15686 prod1 15870 prodss 15873 divsfval 17470 cidpropd 17635 lubval 18279 glbval 18292 joinval 18300 meetval 18314 gsumpropd2lem 18572 mulgfval 18967 mpfrcl 22009 iscnp2 23143 setsmstopn 24383 tngtopn 24555 dvbsss 25820 perfdvf 25821 dchrrcl 27168 nofv 27586 sltres 27591 noseponlem 27593 noextenddif 27597 noextendlt 27598 noextendgt 27599 nolesgn2ores 27601 nogesgn1ores 27603 fvnobday 27607 nosepdmlem 27612 nosepssdm 27615 nosupbnd1lem3 27639 nosupbnd1lem5 27641 nosupbnd2lem1 27644 noinfbnd1lem3 27654 noinfbnd1lem5 27656 noinfbnd2lem1 27659 newval 27784 leftval 27792 rightval 27793 lltropt 27805 madess 27809 oldssmade 27810 oldss 27811 lrold 27830 structiedg0val 28986 snstriedgval 29002 rgrx0nd 29559 vsfval 30596 dmadjrnb 31869 hmdmadj 31903 rdgprc0 35786 fullfunfv 35940 linedegen 36136 bj-inftyexpitaudisj 37198 bj-inftyexpidisj 37203 bj-fvimacnv0 37279 dibvalrel 41162 dicvalrelN 41184 dihvalrel 41278 itgocn 43157 fpwfvss 43405 r1rankcld 44224 grur1cld 44225 uz0 45411 climfveq 45670 climfveqf 45681 afv2ndeffv0 47264 fvmptrabdm 47297 fvconstr 48866 fvconstrn0 48867 fvconstr2 48868 fvconst0ci 48895 fvconstdomi 48896 ipolub00 48997 oppfrcl 49133 initopropdlemlem 49244 initopropd 49248 termopropd 49249 zeroopropd 49250 fucofvalne 49330 |
| Copyright terms: Public domain | W3C validator |