| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version | ||
| Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2570 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
| 2 | eldmg 5862 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
| 3 | 1, 2 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
| 4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
| 5 | tz6.12-2 6846 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 7 | fvprc 6850 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 Vcvv 3447 ∅c0 4296 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: ndmfvrcl 6894 elfvdm 6895 nfvres 6899 fvfundmfvn0 6901 0fv 6902 funfv 6948 fvun1 6952 fvco4i 6962 fvmpti 6967 mptrcl 6977 fvmptss 6980 fvmptex 6982 fvmptnf 6990 fvmptss2 6994 elfvmptrab1 6996 fvopab4ndm 6998 f0cli 7070 funiunfv 7222 funeldmb 7334 ovprc 7425 oprssdm 7570 nssdmovg 7571 ndmovg 7572 1st2val 7996 2nd2val 7997 brovpreldm 8068 soseq 8138 smofvon2 8325 rdgsucmptnf 8397 frsucmptn 8407 brwitnlem 8471 undifixp 8907 r1tr 9729 rankvaln 9752 cardidm 9912 carden2a 9919 carden2b 9920 carddomi2 9923 sdomsdomcardi 9924 pm54.43lem 9953 alephcard 10023 alephnbtwn 10024 alephgeom 10035 cfub 10202 cardcf 10205 cflecard 10206 cfle 10207 cflim2 10216 cfidm 10228 itunisuc 10372 itunitc1 10373 ituniiun 10375 alephadd 10530 alephreg 10535 pwcfsdom 10536 cfpwsdom 10537 adderpq 10909 mulerpq 10910 uzssz 12814 ltweuz 13926 wrdsymb0 14514 lsw0 14530 swrd00 14609 swrd0 14623 pfx00 14639 pfx0 14640 sumz 15688 sumss 15690 sumnul 15726 prod1 15910 prodss 15913 divsfval 17510 cidpropd 17671 lubval 18315 glbval 18328 joinval 18336 meetval 18350 gsumpropd2lem 18606 mulgfval 19001 mpfrcl 21992 iscnp2 23126 setsmstopn 24366 tngtopn 24538 dvbsss 25803 perfdvf 25804 dchrrcl 27151 nofv 27569 sltres 27574 noseponlem 27576 noextenddif 27580 noextendlt 27581 noextendgt 27582 nolesgn2ores 27584 nogesgn1ores 27586 fvnobday 27590 nosepdmlem 27595 nosepssdm 27598 nosupbnd1lem3 27622 nosupbnd1lem5 27624 nosupbnd2lem1 27627 noinfbnd1lem3 27637 noinfbnd1lem5 27639 noinfbnd2lem1 27642 newval 27763 leftval 27771 rightval 27772 lltropt 27784 madess 27788 oldssmade 27789 lrold 27808 structiedg0val 28949 snstriedgval 28965 rgrx0nd 29522 vsfval 30562 dmadjrnb 31835 hmdmadj 31869 rdgprc0 35781 fullfunfv 35935 linedegen 36131 bj-inftyexpitaudisj 37193 bj-inftyexpidisj 37198 bj-fvimacnv0 37274 dibvalrel 41157 dicvalrelN 41179 dihvalrel 41273 itgocn 43153 fpwfvss 43401 r1rankcld 44220 grur1cld 44221 uz0 45408 climfveq 45667 climfveqf 45678 afv2ndeffv0 47261 fvmptrabdm 47294 fvconstr 48850 fvconstrn0 48851 fvconstr2 48852 fvconst0ci 48879 fvconstdomi 48880 ipolub00 48981 oppfrcl 49117 initopropdlemlem 49228 initopropd 49232 termopropd 49233 zeroopropd 49234 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |