| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfv | Structured version Visualization version GIF version | ||
| Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmfv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2576 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
| 2 | eldmg 5908 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
| 3 | 1, 2 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹)) |
| 4 | 3 | con3d 152 | . . 3 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥)) |
| 5 | tz6.12-2 6893 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 7 | fvprc 6897 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 9 | 6, 8 | pm2.61i 182 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2567 Vcvv 3479 ∅c0 4332 class class class wbr 5142 dom cdm 5684 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-dm 5694 df-iota 6513 df-fv 6568 |
| This theorem is referenced by: ndmfvrcl 6941 elfvdm 6942 nfvres 6946 fvfundmfvn0 6948 0fv 6949 funfv 6995 fvun1 6999 fvco4i 7009 fvmpti 7014 mptrcl 7024 fvmptss 7027 fvmptex 7029 fvmptnf 7037 fvmptss2 7041 elfvmptrab1 7043 fvopab4ndm 7045 f0cli 7117 funiunfv 7269 funeldmb 7380 ovprc 7470 oprssdm 7615 nssdmovg 7616 ndmovg 7617 1st2val 8043 2nd2val 8044 brovpreldm 8115 soseq 8185 smofvon2 8397 rdgsucmptnf 8470 frsucmptn 8480 brwitnlem 8546 undifixp 8975 r1tr 9817 rankvaln 9840 cardidm 10000 carden2a 10007 carden2b 10008 carddomi2 10011 sdomsdomcardi 10012 pm54.43lem 10041 alephcard 10111 alephnbtwn 10112 alephgeom 10123 cfub 10290 cardcf 10293 cflecard 10294 cfle 10295 cflim2 10304 cfidm 10316 itunisuc 10460 itunitc1 10461 ituniiun 10463 alephadd 10618 alephreg 10623 pwcfsdom 10624 cfpwsdom 10625 adderpq 10997 mulerpq 10998 uzssz 12900 ltweuz 14003 wrdsymb0 14588 lsw0 14604 swrd00 14683 swrd0 14697 pfx00 14713 pfx0 14714 sumz 15759 sumss 15761 sumnul 15797 prod1 15981 prodss 15984 divsfval 17593 cidpropd 17754 lubval 18402 glbval 18415 joinval 18423 meetval 18437 gsumpropd2lem 18693 mulgfval 19088 mpfrcl 22110 iscnp2 23248 setsmstopn 24491 tngtopn 24672 dvbsss 25938 perfdvf 25939 dchrrcl 27285 nofv 27703 sltres 27708 noseponlem 27710 noextenddif 27714 noextendlt 27715 noextendgt 27716 nolesgn2ores 27718 nogesgn1ores 27720 fvnobday 27724 nosepdmlem 27729 nosepssdm 27732 nosupbnd1lem3 27756 nosupbnd1lem5 27758 nosupbnd2lem1 27761 noinfbnd1lem3 27771 noinfbnd1lem5 27773 noinfbnd2lem1 27776 newval 27895 leftval 27903 rightval 27904 lltropt 27912 madess 27916 oldssmade 27917 lrold 27936 structiedg0val 29040 snstriedgval 29056 rgrx0nd 29613 vsfval 30653 dmadjrnb 31926 hmdmadj 31960 rdgprc0 35795 fullfunfv 35949 linedegen 36145 bj-inftyexpitaudisj 37207 bj-inftyexpidisj 37212 bj-fvimacnv0 37288 dibvalrel 41166 dicvalrelN 41188 dihvalrel 41282 itgocn 43181 fpwfvss 43430 r1rankcld 44255 grur1cld 44256 uz0 45428 climfveq 45689 climfveqf 45700 afv2ndeffv0 47277 fvmptrabdm 47310 fvconstr 48770 fvconstrn0 48771 fvconstr2 48772 fvconst0ci 48796 fvconstdomi 48797 ipolub00 48897 fucofvalne 49043 |
| Copyright terms: Public domain | W3C validator |