MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidex Structured version   Visualization version   GIF version

Theorem catidex 17635
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidex.b 𝐵 = (Base‘𝐶)
catidex.h 𝐻 = (Hom ‘𝐶)
catidex.o · = (comp‘𝐶)
catidex.c (𝜑𝐶 ∈ Cat)
catidex.x (𝜑𝑋𝐵)
Assertion
Ref Expression
catidex (𝜑 → ∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐵   𝐶,𝑓,𝑔,𝑦   𝜑,𝑔   𝑓,𝑋,𝑔,𝑦   𝑓,𝐻,𝑔,𝑦   · ,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑓)

Proof of Theorem catidex
Dummy variables 𝑘 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
21, 1oveq12d 7405 . . 3 (𝑥 = 𝑋 → (𝑥𝐻𝑥) = (𝑋𝐻𝑋))
3 oveq2 7395 . . . . . 6 (𝑥 = 𝑋 → (𝑦𝐻𝑥) = (𝑦𝐻𝑋))
4 opeq2 4838 . . . . . . . . 9 (𝑥 = 𝑋 → ⟨𝑦, 𝑥⟩ = ⟨𝑦, 𝑋⟩)
54, 1oveq12d 7405 . . . . . . . 8 (𝑥 = 𝑋 → (⟨𝑦, 𝑥· 𝑥) = (⟨𝑦, 𝑋· 𝑋))
65oveqd 7404 . . . . . . 7 (𝑥 = 𝑋 → (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓))
76eqeq1d 2731 . . . . . 6 (𝑥 = 𝑋 → ((𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓))
83, 7raleqbidv 3319 . . . . 5 (𝑥 = 𝑋 → (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓))
9 oveq1 7394 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
101, 1opeq12d 4845 . . . . . . . . 9 (𝑥 = 𝑋 → ⟨𝑥, 𝑥⟩ = ⟨𝑋, 𝑋⟩)
1110oveq1d 7402 . . . . . . . 8 (𝑥 = 𝑋 → (⟨𝑥, 𝑥· 𝑦) = (⟨𝑋, 𝑋· 𝑦))
1211oveqd 7404 . . . . . . 7 (𝑥 = 𝑋 → (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔))
1312eqeq1d 2731 . . . . . 6 (𝑥 = 𝑋 → ((𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
149, 13raleqbidv 3319 . . . . 5 (𝑥 = 𝑋 → (∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
158, 14anbi12d 632 . . . 4 (𝑥 = 𝑋 → ((∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
1615ralbidv 3156 . . 3 (𝑥 = 𝑋 → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
172, 16rexeqbidv 3320 . 2 (𝑥 = 𝑋 → (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ ∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
18 catidex.c . . 3 (𝜑𝐶 ∈ Cat)
19 catidex.b . . . . 5 𝐵 = (Base‘𝐶)
20 catidex.h . . . . 5 𝐻 = (Hom ‘𝐶)
21 catidex.o . . . . 5 · = (comp‘𝐶)
2219, 20, 21iscat 17633 . . . 4 (𝐶 ∈ Cat → (𝐶 ∈ Cat ↔ ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))))
2322ibi 267 . . 3 (𝐶 ∈ Cat → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
24 simpl 482 . . . 4 ((∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
2524ralimi 3066 . . 3 (∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ∀𝑥𝐵𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
2618, 23, 253syl 18 . 2 (𝜑 → ∀𝑥𝐵𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
27 catidex.x . 2 (𝜑𝑋𝐵)
2817, 26, 27rspcdva 3589 1 (𝜑 → ∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cop 4595  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-cat 17629
This theorem is referenced by:  catideu  17636
  Copyright terms: Public domain W3C validator