| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chelii | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| cheli.1 | ⊢ 𝐴 ∈ 𝐻 |
| Ref | Expression |
|---|---|
| chelii | ⊢ 𝐴 ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chssii 31201 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | cheli.1 | . 2 ⊢ 𝐴 ∈ 𝐻 | |
| 4 | 2, 3 | sselii 3929 | 1 ⊢ 𝐴 ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 ℋchba 30889 Cℋ cch 30899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-hilex 30969 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fv 6485 df-ov 7344 df-sh 31177 df-ch 31191 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |