HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chelii Structured version   Visualization version   GIF version

Theorem chelii 31253
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
chssi.1 𝐻C
cheli.1 𝐴𝐻
Assertion
Ref Expression
chelii 𝐴 ∈ ℋ

Proof of Theorem chelii
StepHypRef Expression
1 chssi.1 . . 3 𝐻C
21chssii 31251 . 2 𝐻 ⊆ ℋ
3 cheli.1 . 2 𝐴𝐻
42, 3sselii 3979 1 𝐴 ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  chba 30939   C cch 30949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-hilex 31019
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fv 6568  df-ov 7435  df-sh 31227  df-ch 31241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator