| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chelii | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| cheli.1 | ⊢ 𝐴 ∈ 𝐻 |
| Ref | Expression |
|---|---|
| chelii | ⊢ 𝐴 ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chssii 31166 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | cheli.1 | . 2 ⊢ 𝐴 ∈ 𝐻 | |
| 4 | 2, 3 | sselii 3945 | 1 ⊢ 𝐴 ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℋchba 30854 Cℋ cch 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-hilex 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fv 6521 df-ov 7392 df-sh 31142 df-ch 31156 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |