HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chelii Structured version   Visualization version   GIF version

Theorem chelii 31224
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
chssi.1 𝐻C
cheli.1 𝐴𝐻
Assertion
Ref Expression
chelii 𝐴 ∈ ℋ

Proof of Theorem chelii
StepHypRef Expression
1 chssi.1 . . 3 𝐻C
21chssii 31222 . 2 𝐻 ⊆ ℋ
3 cheli.1 . 2 𝐴𝐻
42, 3sselii 3928 1 𝐴 ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  chba 30910   C cch 30920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-hilex 30990
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fv 6497  df-ov 7358  df-sh 31198  df-ch 31212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator