HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chssii Structured version   Visualization version   GIF version

Theorem chssii 31212
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chssi.1 𝐻C
Assertion
Ref Expression
chssii 𝐻 ⊆ ℋ

Proof of Theorem chssii
StepHypRef Expression
1 chssi.1 . . 3 𝐻C
21chshii 31208 . 2 𝐻S
32shssii 31194 1 𝐻 ⊆ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wss 3926  chba 30900   C cch 30910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-hilex 30980
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fv 6539  df-ov 7408  df-sh 31188  df-ch 31202
This theorem is referenced by:  cheli  31213  chelii  31214  hhsscms  31259  chocvali  31280  chm1i  31437  chsscon3i  31442  chsscon2i  31444  chjoi  31469  chj1i  31470  shjshsi  31473  sshhococi  31527  h1dei  31531  spansnpji  31559  spanunsni  31560  h1datomi  31562  spansnji  31627  pjfi  31685  riesz3i  32043  hmopidmpji  32133  pjoccoi  32159  pjinvari  32172  stcltr2i  32256  mdsymi  32392  mdcompli  32410  dmdcompli  32411
  Copyright terms: Public domain W3C validator