| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chssii | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chssii | ⊢ 𝐻 ⊆ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chshii 31163 | . 2 ⊢ 𝐻 ∈ Sℋ |
| 3 | 2 | shssii 31149 | 1 ⊢ 𝐻 ⊆ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 ℋchba 30855 Cℋ cch 30865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fv 6522 df-ov 7393 df-sh 31143 df-ch 31157 |
| This theorem is referenced by: cheli 31168 chelii 31169 hhsscms 31214 chocvali 31235 chm1i 31392 chsscon3i 31397 chsscon2i 31399 chjoi 31424 chj1i 31425 shjshsi 31428 sshhococi 31482 h1dei 31486 spansnpji 31514 spanunsni 31515 h1datomi 31517 spansnji 31582 pjfi 31640 riesz3i 31998 hmopidmpji 32088 pjoccoi 32114 pjinvari 32127 stcltr2i 32211 mdsymi 32347 mdcompli 32365 dmdcompli 32366 |
| Copyright terms: Public domain | W3C validator |