Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chssii | Structured version Visualization version GIF version |
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
chssii | ⊢ 𝐻 ⊆ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chshii 29490 | . 2 ⊢ 𝐻 ∈ Sℋ |
3 | 2 | shssii 29476 | 1 ⊢ 𝐻 ⊆ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 ℋchba 29182 Cℋ cch 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-ov 7258 df-sh 29470 df-ch 29484 |
This theorem is referenced by: cheli 29495 chelii 29496 hhsscms 29541 chocvali 29562 chm1i 29719 chsscon3i 29724 chsscon2i 29726 chjoi 29751 chj1i 29752 shjshsi 29755 sshhococi 29809 h1dei 29813 spansnpji 29841 spanunsni 29842 h1datomi 29844 spansnji 29909 pjfi 29967 riesz3i 30325 hmopidmpji 30415 pjoccoi 30441 pjinvari 30454 stcltr2i 30538 mdsymi 30674 mdcompli 30692 dmdcompli 30693 |
Copyright terms: Public domain | W3C validator |