HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chssii Structured version   Visualization version   GIF version

Theorem chssii 31263
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chssi.1 𝐻C
Assertion
Ref Expression
chssii 𝐻 ⊆ ℋ

Proof of Theorem chssii
StepHypRef Expression
1 chssi.1 . . 3 𝐻C
21chshii 31259 . 2 𝐻S
32shssii 31245 1 𝐻 ⊆ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wss 3976  chba 30951   C cch 30961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fv 6581  df-ov 7451  df-sh 31239  df-ch 31253
This theorem is referenced by:  cheli  31264  chelii  31265  hhsscms  31310  chocvali  31331  chm1i  31488  chsscon3i  31493  chsscon2i  31495  chjoi  31520  chj1i  31521  shjshsi  31524  sshhococi  31578  h1dei  31582  spansnpji  31610  spanunsni  31611  h1datomi  31613  spansnji  31678  pjfi  31736  riesz3i  32094  hmopidmpji  32184  pjoccoi  32210  pjinvari  32223  stcltr2i  32307  mdsymi  32443  mdcompli  32461  dmdcompli  32462
  Copyright terms: Public domain W3C validator