HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chssii Structured version   Visualization version   GIF version

Theorem chssii 31206
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chssi.1 𝐻C
Assertion
Ref Expression
chssii 𝐻 ⊆ ℋ

Proof of Theorem chssii
StepHypRef Expression
1 chssi.1 . . 3 𝐻C
21chshii 31202 . 2 𝐻S
32shssii 31188 1 𝐻 ⊆ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wss 3902  chba 30894   C cch 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-hilex 30974
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fv 6489  df-ov 7349  df-sh 31182  df-ch 31196
This theorem is referenced by:  cheli  31207  chelii  31208  hhsscms  31253  chocvali  31274  chm1i  31431  chsscon3i  31436  chsscon2i  31438  chjoi  31463  chj1i  31464  shjshsi  31467  sshhococi  31521  h1dei  31525  spansnpji  31553  spanunsni  31554  h1datomi  31556  spansnji  31621  pjfi  31679  riesz3i  32037  hmopidmpji  32127  pjoccoi  32153  pjinvari  32166  stcltr2i  32250  mdsymi  32386  mdcompli  32404  dmdcompli  32405
  Copyright terms: Public domain W3C validator