Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chssii | Structured version Visualization version GIF version |
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
chssii | ⊢ 𝐻 ⊆ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chshii 29877 | . 2 ⊢ 𝐻 ∈ Sℋ |
3 | 2 | shssii 29863 | 1 ⊢ 𝐻 ⊆ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3902 ℋchba 29569 Cℋ cch 29579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-hilex 29649 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-xp 5631 df-cnv 5633 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fv 6492 df-ov 7345 df-sh 29857 df-ch 29871 |
This theorem is referenced by: cheli 29882 chelii 29883 hhsscms 29928 chocvali 29949 chm1i 30106 chsscon3i 30111 chsscon2i 30113 chjoi 30138 chj1i 30139 shjshsi 30142 sshhococi 30196 h1dei 30200 spansnpji 30228 spanunsni 30229 h1datomi 30231 spansnji 30296 pjfi 30354 riesz3i 30712 hmopidmpji 30802 pjoccoi 30828 pjinvari 30841 stcltr2i 30925 mdsymi 31061 mdcompli 31079 dmdcompli 31080 |
Copyright terms: Public domain | W3C validator |