| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chssii | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chssii | ⊢ 𝐻 ⊆ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chshii 31202 | . 2 ⊢ 𝐻 ∈ Sℋ |
| 3 | 2 | shssii 31188 | 1 ⊢ 𝐻 ⊆ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ⊆ wss 3902 ℋchba 30894 Cℋ cch 30904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-hilex 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 df-ov 7349 df-sh 31182 df-ch 31196 |
| This theorem is referenced by: cheli 31207 chelii 31208 hhsscms 31253 chocvali 31274 chm1i 31431 chsscon3i 31436 chsscon2i 31438 chjoi 31463 chj1i 31464 shjshsi 31467 sshhococi 31521 h1dei 31525 spansnpji 31553 spanunsni 31554 h1datomi 31556 spansnji 31621 pjfi 31679 riesz3i 32037 hmopidmpji 32127 pjoccoi 32153 pjinvari 32166 stcltr2i 32250 mdsymi 32386 mdcompli 32404 dmdcompli 32405 |
| Copyright terms: Public domain | W3C validator |