| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chssii | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chssii | ⊢ 𝐻 ⊆ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chshii 31156 | . 2 ⊢ 𝐻 ∈ Sℋ |
| 3 | 2 | shssii 31142 | 1 ⊢ 𝐻 ⊆ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3914 ℋchba 30848 Cℋ cch 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fv 6519 df-ov 7390 df-sh 31136 df-ch 31150 |
| This theorem is referenced by: cheli 31161 chelii 31162 hhsscms 31207 chocvali 31228 chm1i 31385 chsscon3i 31390 chsscon2i 31392 chjoi 31417 chj1i 31418 shjshsi 31421 sshhococi 31475 h1dei 31479 spansnpji 31507 spanunsni 31508 h1datomi 31510 spansnji 31575 pjfi 31633 riesz3i 31991 hmopidmpji 32081 pjoccoi 32107 pjinvari 32120 stcltr2i 32204 mdsymi 32340 mdcompli 32358 dmdcompli 32359 |
| Copyright terms: Public domain | W3C validator |