HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chssii Structured version   Visualization version   GIF version

Theorem chssii 31213
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chssi.1 𝐻C
Assertion
Ref Expression
chssii 𝐻 ⊆ ℋ

Proof of Theorem chssii
StepHypRef Expression
1 chssi.1 . . 3 𝐻C
21chshii 31209 . 2 𝐻S
32shssii 31195 1 𝐻 ⊆ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  wss 3898  chba 30901   C cch 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-hilex 30981
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fv 6494  df-ov 7355  df-sh 31189  df-ch 31203
This theorem is referenced by:  cheli  31214  chelii  31215  hhsscms  31260  chocvali  31281  chm1i  31438  chsscon3i  31443  chsscon2i  31445  chjoi  31470  chj1i  31471  shjshsi  31474  sshhococi  31528  h1dei  31532  spansnpji  31560  spanunsni  31561  h1datomi  31563  spansnji  31628  pjfi  31686  riesz3i  32044  hmopidmpji  32134  pjoccoi  32160  pjinvari  32173  stcltr2i  32257  mdsymi  32393  mdcompli  32411  dmdcompli  32412
  Copyright terms: Public domain W3C validator