| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chssii | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chssii | ⊢ 𝐻 ⊆ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chshii 31208 | . 2 ⊢ 𝐻 ∈ Sℋ |
| 3 | 2 | shssii 31194 | 1 ⊢ 𝐻 ⊆ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ⊆ wss 3926 ℋchba 30900 Cℋ cch 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-hilex 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fv 6539 df-ov 7408 df-sh 31188 df-ch 31202 |
| This theorem is referenced by: cheli 31213 chelii 31214 hhsscms 31259 chocvali 31280 chm1i 31437 chsscon3i 31442 chsscon2i 31444 chjoi 31469 chj1i 31470 shjshsi 31473 sshhococi 31527 h1dei 31531 spansnpji 31559 spanunsni 31560 h1datomi 31562 spansnji 31627 pjfi 31685 riesz3i 32043 hmopidmpji 32133 pjoccoi 32159 pjinvari 32172 stcltr2i 32256 mdsymi 32392 mdcompli 32410 dmdcompli 32411 |
| Copyright terms: Public domain | W3C validator |