| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chssii | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chssii | ⊢ 𝐻 ⊆ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chshii 31209 | . 2 ⊢ 𝐻 ∈ Sℋ |
| 3 | 2 | shssii 31195 | 1 ⊢ 𝐻 ⊆ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ⊆ wss 3898 ℋchba 30901 Cℋ cch 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-hilex 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fv 6494 df-ov 7355 df-sh 31189 df-ch 31203 |
| This theorem is referenced by: cheli 31214 chelii 31215 hhsscms 31260 chocvali 31281 chm1i 31438 chsscon3i 31443 chsscon2i 31445 chjoi 31470 chj1i 31471 shjshsi 31474 sshhococi 31528 h1dei 31532 spansnpji 31560 spanunsni 31561 h1datomi 31563 spansnji 31628 pjfi 31686 riesz3i 32044 hmopidmpji 32134 pjoccoi 32160 pjinvari 32173 stcltr2i 32257 mdsymi 32393 mdcompli 32411 dmdcompli 32412 |
| Copyright terms: Public domain | W3C validator |