Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version |
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chssii 29579 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 3917 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ℋchba 29267 Cℋ cch 29277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5222 ax-hilex 29347 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-xp 5591 df-cnv 5593 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fv 6435 df-ov 7271 df-sh 29555 df-ch 29569 |
This theorem is referenced by: pjhthlem1 29739 pjhthlem2 29740 h1de2ci 29904 spanunsni 29927 spansncvi 30000 3oalem1 30010 pjcompi 30020 pjocini 30046 pjjsi 30048 pjrni 30050 pjdsi 30060 pjds3i 30061 mayete3i 30076 riesz3i 30410 pjnmopi 30496 pjnormssi 30516 pjimai 30524 pjclem4a 30546 pjclem4 30547 pj3lem1 30554 pj3si 30555 strlem1 30598 strlem3 30601 strlem5 30603 hstrlem3 30609 hstrlem5 30611 sumdmdii 30763 sumdmdlem 30766 sumdmdlem2 30767 |
Copyright terms: Public domain | W3C validator |