![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version |
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chssii 28606 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 3793 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ℋchba 28294 Cℋ cch 28304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-hilex 28374 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-rex 3094 df-rab 3097 df-v 3386 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-op 4374 df-uni 4628 df-br 4843 df-opab 4905 df-xp 5317 df-cnv 5319 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-iota 6063 df-fv 6108 df-ov 6880 df-sh 28582 df-ch 28596 |
This theorem is referenced by: pjhthlem1 28768 pjhthlem2 28769 h1de2ci 28933 spanunsni 28956 spansncvi 29029 3oalem1 29039 pjcompi 29049 pjocini 29075 pjjsi 29077 pjrni 29079 pjdsi 29089 pjds3i 29090 mayete3i 29105 riesz3i 29439 pjnmopi 29525 pjnormssi 29545 pjimai 29553 pjclem4a 29575 pjclem4 29576 pj3lem1 29583 pj3si 29584 strlem1 29627 strlem3 29630 strlem5 29632 hstrlem3 29638 hstrlem5 29640 sumdmdii 29792 sumdmdlem 29795 sumdmdlem2 29796 |
Copyright terms: Public domain | W3C validator |