| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chssii 31212 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3954 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ℋchba 30900 Cℋ cch 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-hilex 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fv 6539 df-ov 7408 df-sh 31188 df-ch 31202 |
| This theorem is referenced by: pjhthlem1 31372 pjhthlem2 31373 h1de2ci 31537 spanunsni 31560 spansncvi 31633 3oalem1 31643 pjcompi 31653 pjocini 31679 pjjsi 31681 pjrni 31683 pjdsi 31693 pjds3i 31694 mayete3i 31709 riesz3i 32043 pjnmopi 32129 pjnormssi 32149 pjimai 32157 pjclem4a 32179 pjclem4 32180 pj3lem1 32187 pj3si 32188 strlem1 32231 strlem3 32234 strlem5 32236 hstrlem3 32242 hstrlem5 32244 sumdmdii 32396 sumdmdlem 32399 sumdmdlem2 32400 |
| Copyright terms: Public domain | W3C validator |