| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chssii 31211 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3925 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ℋchba 30899 Cℋ cch 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 df-ov 7349 df-sh 31187 df-ch 31201 |
| This theorem is referenced by: pjhthlem1 31371 pjhthlem2 31372 h1de2ci 31536 spanunsni 31559 spansncvi 31632 3oalem1 31642 pjcompi 31652 pjocini 31678 pjjsi 31680 pjrni 31682 pjdsi 31692 pjds3i 31693 mayete3i 31708 riesz3i 32042 pjnmopi 32128 pjnormssi 32148 pjimai 32156 pjclem4a 32178 pjclem4 32179 pj3lem1 32186 pj3si 32187 strlem1 32230 strlem3 32233 strlem5 32235 hstrlem3 32241 hstrlem5 32243 sumdmdii 32395 sumdmdlem 32398 sumdmdlem2 32399 |
| Copyright terms: Public domain | W3C validator |