| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chssii 31167 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3945 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℋchba 30855 Cℋ cch 30865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fv 6522 df-ov 7393 df-sh 31143 df-ch 31157 |
| This theorem is referenced by: pjhthlem1 31327 pjhthlem2 31328 h1de2ci 31492 spanunsni 31515 spansncvi 31588 3oalem1 31598 pjcompi 31608 pjocini 31634 pjjsi 31636 pjrni 31638 pjdsi 31648 pjds3i 31649 mayete3i 31664 riesz3i 31998 pjnmopi 32084 pjnormssi 32104 pjimai 32112 pjclem4a 32134 pjclem4 32135 pj3lem1 32142 pj3si 32143 strlem1 32186 strlem3 32189 strlem5 32191 hstrlem3 32197 hstrlem5 32199 sumdmdii 32351 sumdmdlem 32354 sumdmdlem2 32355 |
| Copyright terms: Public domain | W3C validator |