Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version |
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chssii 29593 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 3917 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ℋchba 29281 Cℋ cch 29291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fv 6441 df-ov 7278 df-sh 29569 df-ch 29583 |
This theorem is referenced by: pjhthlem1 29753 pjhthlem2 29754 h1de2ci 29918 spanunsni 29941 spansncvi 30014 3oalem1 30024 pjcompi 30034 pjocini 30060 pjjsi 30062 pjrni 30064 pjdsi 30074 pjds3i 30075 mayete3i 30090 riesz3i 30424 pjnmopi 30510 pjnormssi 30530 pjimai 30538 pjclem4a 30560 pjclem4 30561 pj3lem1 30568 pj3si 30569 strlem1 30612 strlem3 30615 strlem5 30617 hstrlem3 30623 hstrlem5 30625 sumdmdii 30777 sumdmdlem 30780 sumdmdlem2 30781 |
Copyright terms: Public domain | W3C validator |