![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version |
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chssii 31040 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 3976 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ℋchba 30728 Cℋ cch 30738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-hilex 30808 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fv 6556 df-ov 7423 df-sh 31016 df-ch 31030 |
This theorem is referenced by: pjhthlem1 31200 pjhthlem2 31201 h1de2ci 31365 spanunsni 31388 spansncvi 31461 3oalem1 31471 pjcompi 31481 pjocini 31507 pjjsi 31509 pjrni 31511 pjdsi 31521 pjds3i 31522 mayete3i 31537 riesz3i 31871 pjnmopi 31957 pjnormssi 31977 pjimai 31985 pjclem4a 32007 pjclem4 32008 pj3lem1 32015 pj3si 32016 strlem1 32059 strlem3 32062 strlem5 32064 hstrlem3 32070 hstrlem5 32072 sumdmdii 32224 sumdmdlem 32227 sumdmdlem2 32228 |
Copyright terms: Public domain | W3C validator |