| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chssii 31175 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3931 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℋchba 30863 Cℋ cch 30873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-hilex 30943 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 df-ov 7352 df-sh 31151 df-ch 31165 |
| This theorem is referenced by: pjhthlem1 31335 pjhthlem2 31336 h1de2ci 31500 spanunsni 31523 spansncvi 31596 3oalem1 31606 pjcompi 31616 pjocini 31642 pjjsi 31644 pjrni 31646 pjdsi 31656 pjds3i 31657 mayete3i 31672 riesz3i 32006 pjnmopi 32092 pjnormssi 32112 pjimai 32120 pjclem4a 32142 pjclem4 32143 pj3lem1 32150 pj3si 32151 strlem1 32194 strlem3 32197 strlem5 32199 hstrlem3 32205 hstrlem5 32207 sumdmdii 32359 sumdmdlem 32362 sumdmdlem2 32363 |
| Copyright terms: Public domain | W3C validator |