| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chssii 31160 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3942 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℋchba 30848 Cℋ cch 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fv 6519 df-ov 7390 df-sh 31136 df-ch 31150 |
| This theorem is referenced by: pjhthlem1 31320 pjhthlem2 31321 h1de2ci 31485 spanunsni 31508 spansncvi 31581 3oalem1 31591 pjcompi 31601 pjocini 31627 pjjsi 31629 pjrni 31631 pjdsi 31641 pjds3i 31642 mayete3i 31657 riesz3i 31991 pjnmopi 32077 pjnormssi 32097 pjimai 32105 pjclem4a 32127 pjclem4 32128 pj3lem1 32135 pj3si 32136 strlem1 32179 strlem3 32182 strlem5 32184 hstrlem3 32190 hstrlem5 32192 sumdmdii 32344 sumdmdlem 32347 sumdmdlem2 32348 |
| Copyright terms: Public domain | W3C validator |