Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version |
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chssii 29494 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 3913 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℋchba 29182 Cℋ cch 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-ov 7258 df-sh 29470 df-ch 29484 |
This theorem is referenced by: pjhthlem1 29654 pjhthlem2 29655 h1de2ci 29819 spanunsni 29842 spansncvi 29915 3oalem1 29925 pjcompi 29935 pjocini 29961 pjjsi 29963 pjrni 29965 pjdsi 29975 pjds3i 29976 mayete3i 29991 riesz3i 30325 pjnmopi 30411 pjnormssi 30431 pjimai 30439 pjclem4a 30461 pjclem4 30462 pj3lem1 30469 pj3si 30470 strlem1 30513 strlem3 30516 strlem5 30518 hstrlem3 30524 hstrlem5 30526 sumdmdii 30678 sumdmdlem 30681 sumdmdlem2 30682 |
Copyright terms: Public domain | W3C validator |