| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chssii 31210 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3939 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℋchba 30898 Cℋ cch 30908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-hilex 30978 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fv 6507 df-ov 7372 df-sh 31186 df-ch 31200 |
| This theorem is referenced by: pjhthlem1 31370 pjhthlem2 31371 h1de2ci 31535 spanunsni 31558 spansncvi 31631 3oalem1 31641 pjcompi 31651 pjocini 31677 pjjsi 31679 pjrni 31681 pjdsi 31691 pjds3i 31692 mayete3i 31707 riesz3i 32041 pjnmopi 32127 pjnormssi 32147 pjimai 32155 pjclem4a 32177 pjclem4 32178 pj3lem1 32185 pj3si 32186 strlem1 32229 strlem3 32232 strlem5 32234 hstrlem3 32240 hstrlem5 32242 sumdmdii 32394 sumdmdlem 32397 sumdmdlem2 32398 |
| Copyright terms: Public domain | W3C validator |