| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chssi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chssii 31133 | . 2 ⊢ 𝐻 ⊆ ℋ |
| 3 | 2 | sseli 3939 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℋchba 30821 Cℋ cch 30831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-hilex 30901 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fv 6507 df-ov 7372 df-sh 31109 df-ch 31123 |
| This theorem is referenced by: pjhthlem1 31293 pjhthlem2 31294 h1de2ci 31458 spanunsni 31481 spansncvi 31554 3oalem1 31564 pjcompi 31574 pjocini 31600 pjjsi 31602 pjrni 31604 pjdsi 31614 pjds3i 31615 mayete3i 31630 riesz3i 31964 pjnmopi 32050 pjnormssi 32070 pjimai 32078 pjclem4a 32100 pjclem4 32101 pj3lem1 32108 pj3si 32109 strlem1 32152 strlem3 32155 strlem5 32157 hstrlem3 32163 hstrlem5 32165 sumdmdii 32317 sumdmdlem 32320 sumdmdlem2 32321 |
| Copyright terms: Public domain | W3C validator |