![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version |
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chssii 31260 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 3991 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ℋchba 30948 Cℋ cch 30958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-hilex 31028 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fv 6571 df-ov 7434 df-sh 31236 df-ch 31250 |
This theorem is referenced by: pjhthlem1 31420 pjhthlem2 31421 h1de2ci 31585 spanunsni 31608 spansncvi 31681 3oalem1 31691 pjcompi 31701 pjocini 31727 pjjsi 31729 pjrni 31731 pjdsi 31741 pjds3i 31742 mayete3i 31757 riesz3i 32091 pjnmopi 32177 pjnormssi 32197 pjimai 32205 pjclem4a 32227 pjclem4 32228 pj3lem1 32235 pj3si 32236 strlem1 32279 strlem3 32282 strlem5 32284 hstrlem3 32290 hstrlem5 32292 sumdmdii 32444 sumdmdlem 32447 sumdmdlem2 32448 |
Copyright terms: Public domain | W3C validator |