![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cheli | Structured version Visualization version GIF version |
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
cheli | ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chssii 31263 | . 2 ⊢ 𝐻 ⊆ ℋ |
3 | 2 | sseli 4004 | 1 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℋchba 30951 Cℋ cch 30961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fv 6581 df-ov 7451 df-sh 31239 df-ch 31253 |
This theorem is referenced by: pjhthlem1 31423 pjhthlem2 31424 h1de2ci 31588 spanunsni 31611 spansncvi 31684 3oalem1 31694 pjcompi 31704 pjocini 31730 pjjsi 31732 pjrni 31734 pjdsi 31744 pjds3i 31745 mayete3i 31760 riesz3i 32094 pjnmopi 32180 pjnormssi 32200 pjimai 32208 pjclem4a 32230 pjclem4 32231 pj3lem1 32238 pj3si 32239 strlem1 32282 strlem3 32285 strlem5 32287 hstrlem3 32293 hstrlem5 32295 sumdmdii 32447 sumdmdlem 32450 sumdmdlem2 32451 |
Copyright terms: Public domain | W3C validator |