Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chle0i | Structured version Visualization version GIF version |
Description: No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
chle0i | ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | chle0 29784 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 Cℋ cch 29270 0ℋc0h 29276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-hilex 29340 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fv 6438 df-ov 7271 df-sh 29548 df-ch 29562 df-ch0 29594 |
This theorem is referenced by: chj00i 29828 chsup0 29889 spansnm0i 29991 largei 30608 |
Copyright terms: Public domain | W3C validator |