HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chle0i Structured version   Visualization version   GIF version

Theorem chle0i 28900
Description: No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chle0i (𝐴 ⊆ 0𝐴 = 0)

Proof of Theorem chle0i
StepHypRef Expression
1 ch0le.1 . 2 𝐴C
2 chle0 28891 . 2 (𝐴C → (𝐴 ⊆ 0𝐴 = 0))
31, 2ax-mp 5 1 (𝐴 ⊆ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1601  wcel 2107  wss 3792   C cch 28375  0c0h 28381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-hilex 28445
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-xp 5363  df-cnv 5365  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fv 6145  df-ov 6927  df-sh 28653  df-ch 28667  df-ch0 28699
This theorem is referenced by:  chj00i  28935  chsup0  28996  spansnm0i  29098  largei  29715
  Copyright terms: Public domain W3C validator