HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chle0i Structured version   Visualization version   GIF version

Theorem chle0i 31396
Description: No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chle0i (𝐴 ⊆ 0𝐴 = 0)

Proof of Theorem chle0i
StepHypRef Expression
1 ch0le.1 . 2 𝐴C
2 chle0 31387 . 2 (𝐴C → (𝐴 ⊆ 0𝐴 = 0))
31, 2ax-mp 5 1 (𝐴 ⊆ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wss 3903   C cch 30873  0c0h 30879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-hilex 30943
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fv 6490  df-ov 7352  df-sh 31151  df-ch 31165  df-ch0 31197
This theorem is referenced by:  chj00i  31431  chsup0  31492  spansnm0i  31594  largei  32211
  Copyright terms: Public domain W3C validator