![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chle0i | Structured version Visualization version GIF version |
Description: No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
chle0i | ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | chle0 28891 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 Cℋ cch 28375 0ℋc0h 28381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-hilex 28445 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-xp 5363 df-cnv 5365 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fv 6145 df-ov 6927 df-sh 28653 df-ch 28667 df-ch0 28699 |
This theorem is referenced by: chj00i 28935 chsup0 28996 spansnm0i 29098 largei 29715 |
Copyright terms: Public domain | W3C validator |