HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chle0i Structured version   Visualization version   GIF version

Theorem chle0i 30973
Description: No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chle0i (𝐴 ⊆ 0𝐴 = 0)

Proof of Theorem chle0i
StepHypRef Expression
1 ch0le.1 . 2 𝐴C
2 chle0 30964 . 2 (𝐴C → (𝐴 ⊆ 0𝐴 = 0))
31, 2ax-mp 5 1 (𝐴 ⊆ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wcel 2105  wss 3948   C cch 30450  0c0h 30456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-hilex 30520
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fv 6551  df-ov 7415  df-sh 30728  df-ch 30742  df-ch0 30774
This theorem is referenced by:  chj00i  31008  chsup0  31069  spansnm0i  31171  largei  31788
  Copyright terms: Public domain W3C validator