HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chle0i Structured version   Visualization version   GIF version

Theorem chle0i 29793
Description: No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chle0i (𝐴 ⊆ 0𝐴 = 0)

Proof of Theorem chle0i
StepHypRef Expression
1 ch0le.1 . 2 𝐴C
2 chle0 29784 . 2 (𝐴C → (𝐴 ⊆ 0𝐴 = 0))
31, 2ax-mp 5 1 (𝐴 ⊆ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2109  wss 3891   C cch 29270  0c0h 29276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-hilex 29340
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fv 6438  df-ov 7271  df-sh 29548  df-ch 29562  df-ch0 29594
This theorem is referenced by:  chj00i  29828  chsup0  29889  spansnm0i  29991  largei  30608
  Copyright terms: Public domain W3C validator