HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chle0i Structured version   Visualization version   GIF version

Theorem chle0i 31438
Description: No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chle0i (𝐴 ⊆ 0𝐴 = 0)

Proof of Theorem chle0i
StepHypRef Expression
1 ch0le.1 . 2 𝐴C
2 chle0 31429 . 2 (𝐴C → (𝐴 ⊆ 0𝐴 = 0))
31, 2ax-mp 5 1 (𝐴 ⊆ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wss 3931   C cch 30915  0c0h 30921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-hilex 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fv 6544  df-ov 7413  df-sh 31193  df-ch 31207  df-ch0 31239
This theorem is referenced by:  chj00i  31473  chsup0  31534  spansnm0i  31636  largei  32253
  Copyright terms: Public domain W3C validator