|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > chle0i | Structured version Visualization version GIF version | ||
| Description: No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ | 
| Ref | Expression | 
|---|---|
| chle0i | ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ch0le.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | chle0 31462 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 Cℋ cch 30948 0ℋc0h 30954 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-hilex 31018 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fv 6569 df-ov 7434 df-sh 31226 df-ch 31240 df-ch0 31272 | 
| This theorem is referenced by: chj00i 31506 chsup0 31567 spansnm0i 31669 largei 32286 | 
| Copyright terms: Public domain | W3C validator |