HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ch0lei Structured version   Visualization version   GIF version

Theorem ch0lei 31483
Description: The closed subspace zero is the smallest member of C. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
ch0lei 0𝐴

Proof of Theorem ch0lei
StepHypRef Expression
1 ch0le.1 . 2 𝐴C
2 ch0le 31473 . 2 (𝐴C → 0𝐴)
31, 2ax-mp 5 1 0𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wss 3976   C cch 30961  0c0h 30967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fv 6581  df-ov 7451  df-sh 31239  df-ch 31253  df-ch0 31285
This theorem is referenced by:  chj0i  31487  chm0i  31522  hst0  32265
  Copyright terms: Public domain W3C validator