![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ch0lei | Structured version Visualization version GIF version |
Description: The closed subspace zero is the smallest member of Cℋ. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
ch0lei | ⊢ 0ℋ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | ch0le 29002 | . 2 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0ℋ ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2050 ⊆ wss 3831 Cℋ cch 28488 0ℋc0h 28494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-sep 5061 ax-hilex 28558 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-xp 5414 df-cnv 5416 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fv 6198 df-ov 6981 df-sh 28766 df-ch 28780 df-ch0 28812 |
This theorem is referenced by: chj0i 29016 chm0i 29051 hst0 29794 |
Copyright terms: Public domain | W3C validator |