Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chle0 | Structured version Visualization version GIF version |
Description: No Hilbert lattice element is smaller than zero. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chle0 | ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 29305 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
2 | shle0 29523 | . 2 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 Sℋ csh 29009 Cℋ cch 29010 0ℋc0h 29016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-hilex 29080 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fv 6388 df-ov 7216 df-sh 29288 df-ch 29302 df-ch0 29334 |
This theorem is referenced by: chle0i 29533 chssoc 29577 hatomistici 30443 atcvat4i 30478 |
Copyright terms: Public domain | W3C validator |