![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chne0i | Structured version Visualization version GIF version |
Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
chne0i | ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | chshii 28639 | . 2 ⊢ 𝐴 ∈ Sℋ |
3 | 2 | shne0i 28862 | 1 ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2166 ≠ wne 2999 ∃wrex 3118 0ℎc0v 28336 Cℋ cch 28341 0ℋc0h 28347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-hilex 28411 ax-hv0cl 28415 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-xp 5348 df-cnv 5350 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fv 6131 df-ov 6908 df-sh 28619 df-ch 28633 df-ch0 28665 |
This theorem is referenced by: chne0 28908 hne0 28961 h1datomi 28995 riesz3i 29476 pjnmopi 29562 |
Copyright terms: Public domain | W3C validator |