Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  chne0i Structured version   Visualization version   GIF version

Theorem chne0i 29215
 Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chne0i (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem chne0i
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chshii 28989 . 2 𝐴S
32shne0i 29210 1 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∈ wcel 2115   ≠ wne 3007  ∃wrex 3127  0ℎc0v 28686   Cℋ cch 28691  0ℋc0h 28697 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-hilex 28761  ax-hv0cl 28765 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-rex 3132  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-xp 5534  df-cnv 5536  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fv 6336  df-ov 7133  df-sh 28969  df-ch 28983  df-ch0 29015 This theorem is referenced by:  chne0  29256  hne0  29309  h1datomi  29343  riesz3i  29824  pjnmopi  29910
 Copyright terms: Public domain W3C validator