HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chne0i Structured version   Visualization version   GIF version

Theorem chne0i 29815
Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chne0i (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem chne0i
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chshii 29589 . 2 𝐴S
32shne0i 29810 1 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  wne 2943  wrex 3065  0c0v 29286   C cch 29291  0c0h 29297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-hilex 29361  ax-hv0cl 29365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fv 6441  df-ov 7278  df-sh 29569  df-ch 29583  df-ch0 29615
This theorem is referenced by:  chne0  29856  hne0  29909  h1datomi  29943  riesz3i  30424  pjnmopi  30510
  Copyright terms: Public domain W3C validator