HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chne0i Structured version   Visualization version   GIF version

Theorem chne0i 30973
Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chne0i (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem chne0i
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chshii 30747 . 2 𝐴S
32shne0i 30968 1 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2104  wne 2938  wrex 3068  0c0v 30444   C cch 30449  0c0h 30455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-hilex 30519  ax-hv0cl 30523
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fv 6550  df-ov 7414  df-sh 30727  df-ch 30741  df-ch0 30773
This theorem is referenced by:  chne0  31014  hne0  31067  h1datomi  31101  riesz3i  31582  pjnmopi  31668
  Copyright terms: Public domain W3C validator