![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chm1i | Structured version Visualization version GIF version |
Description: Meet with lattice one in Cℋ. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
chm1i | ⊢ (𝐴 ∩ ℋ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | chssii 31276 | . 2 ⊢ 𝐴 ⊆ ℋ |
3 | dfss2 3984 | . 2 ⊢ (𝐴 ⊆ ℋ ↔ (𝐴 ∩ ℋ) = 𝐴) | |
4 | 2, 3 | mpbi 230 | 1 ⊢ (𝐴 ∩ ℋ) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∩ cin 3965 ⊆ wss 3966 ℋchba 30964 Cℋ cch 30974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-hilex 31044 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-xp 5699 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fv 6577 df-ov 7441 df-sh 31252 df-ch 31266 |
This theorem is referenced by: stcltrlem1 32321 |
Copyright terms: Public domain | W3C validator |