HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chm1i Structured version   Visualization version   GIF version

Theorem chm1i 31385
Description: Meet with lattice one in C. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chm1i (𝐴 ∩ ℋ) = 𝐴

Proof of Theorem chm1i
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chssii 31160 . 2 𝐴 ⊆ ℋ
3 dfss2 3932 . 2 (𝐴 ⊆ ℋ ↔ (𝐴 ∩ ℋ) = 𝐴)
42, 3mpbi 230 1 (𝐴 ∩ ℋ) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cin 3913  wss 3914  chba 30848   C cch 30858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519  df-ov 7390  df-sh 31136  df-ch 31150
This theorem is referenced by:  stcltrlem1  32205
  Copyright terms: Public domain W3C validator