HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chm1i Structured version   Visualization version   GIF version

Theorem chm1i 29719
Description: Meet with lattice one in C. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chm1i (𝐴 ∩ ℋ) = 𝐴

Proof of Theorem chm1i
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chssii 29494 . 2 𝐴 ⊆ ℋ
3 df-ss 3900 . 2 (𝐴 ⊆ ℋ ↔ (𝐴 ∩ ℋ) = 𝐴)
42, 3mpbi 229 1 (𝐴 ∩ ℋ) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  cin 3882  wss 3883  chba 29182   C cch 29192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426  df-ov 7258  df-sh 29470  df-ch 29484
This theorem is referenced by:  stcltrlem1  30539
  Copyright terms: Public domain W3C validator