| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chm1i | Structured version Visualization version GIF version | ||
| Description: Meet with lattice one in Cℋ. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chm1i | ⊢ (𝐴 ∩ ℋ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | chssii 31178 | . 2 ⊢ 𝐴 ⊆ ℋ |
| 3 | dfss2 3949 | . 2 ⊢ (𝐴 ⊆ ℋ ↔ (𝐴 ∩ ℋ) = 𝐴) | |
| 4 | 2, 3 | mpbi 230 | 1 ⊢ (𝐴 ∩ ℋ) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ⊆ wss 3931 ℋchba 30866 Cℋ cch 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-hilex 30946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fv 6549 df-ov 7416 df-sh 31154 df-ch 31168 |
| This theorem is referenced by: stcltrlem1 32223 |
| Copyright terms: Public domain | W3C validator |