HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chm1i Structured version   Visualization version   GIF version

Theorem chm1i 30696
Description: Meet with lattice one in C. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chm1i (𝐴 ∩ ℋ) = 𝐴

Proof of Theorem chm1i
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chssii 30471 . 2 𝐴 ⊆ ℋ
3 df-ss 3964 . 2 (𝐴 ⊆ ℋ ↔ (𝐴 ∩ ℋ) = 𝐴)
42, 3mpbi 229 1 (𝐴 ∩ ℋ) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  cin 3946  wss 3947  chba 30159   C cch 30169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-hilex 30239
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fv 6548  df-ov 7408  df-sh 30447  df-ch 30461
This theorem is referenced by:  stcltrlem1  31516
  Copyright terms: Public domain W3C validator