![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chj0i | Structured version Visualization version GIF version |
Description: Join with lattice zero in Cℋ. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
chj0i | ⊢ (𝐴 ∨ℋ 0ℋ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | h0elch 30485 | . . 3 ⊢ 0ℋ ∈ Cℋ | |
3 | 1, 2 | chjvali 30583 | . 2 ⊢ (𝐴 ∨ℋ 0ℋ) = (⊥‘(⊥‘(𝐴 ∪ 0ℋ))) |
4 | 1 | ch0lei 30681 | . . . . 5 ⊢ 0ℋ ⊆ 𝐴 |
5 | ssequn2 4181 | . . . . 5 ⊢ (0ℋ ⊆ 𝐴 ↔ (𝐴 ∪ 0ℋ) = 𝐴) | |
6 | 4, 5 | mpbi 229 | . . . 4 ⊢ (𝐴 ∪ 0ℋ) = 𝐴 |
7 | 6 | fveq2i 6890 | . . 3 ⊢ (⊥‘(𝐴 ∪ 0ℋ)) = (⊥‘𝐴) |
8 | 7 | fveq2i 6890 | . 2 ⊢ (⊥‘(⊥‘(𝐴 ∪ 0ℋ))) = (⊥‘(⊥‘𝐴)) |
9 | 1 | pjococi 30667 | . 2 ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 |
10 | 3, 8, 9 | 3eqtri 2765 | 1 ⊢ (𝐴 ∨ℋ 0ℋ) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∪ cun 3944 ⊆ wss 3946 ‘cfv 6539 (class class class)co 7403 Cℋ cch 30159 ⊥cort 30160 ∨ℋ chj 30163 0ℋc0h 30165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-inf2 9631 ax-cc 10425 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 ax-mulf 11185 ax-hilex 30229 ax-hfvadd 30230 ax-hvcom 30231 ax-hvass 30232 ax-hv0cl 30233 ax-hvaddid 30234 ax-hfvmul 30235 ax-hvmulid 30236 ax-hvmulass 30237 ax-hvdistr1 30238 ax-hvdistr2 30239 ax-hvmul0 30240 ax-hfi 30309 ax-his1 30312 ax-his2 30313 ax-his3 30314 ax-his4 30315 ax-hcompl 30432 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-iin 4998 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-isom 6548 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-oadd 8464 df-omul 8465 df-er 8698 df-map 8817 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-acn 9932 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-div 11867 df-nn 12208 df-2 12270 df-3 12271 df-4 12272 df-n0 12468 df-z 12554 df-uz 12818 df-q 12928 df-rp 12970 df-xneg 13087 df-xadd 13088 df-xmul 13089 df-ico 13325 df-icc 13326 df-fz 13480 df-fl 13752 df-seq 13962 df-exp 14023 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15427 df-rlim 15428 df-rest 17363 df-topgen 17384 df-psmet 20920 df-xmet 20921 df-met 20922 df-bl 20923 df-mopn 20924 df-fbas 20925 df-fg 20926 df-top 22377 df-topon 22394 df-bases 22430 df-cld 22504 df-ntr 22505 df-cls 22506 df-nei 22583 df-lm 22714 df-haus 22800 df-fil 23331 df-fm 23423 df-flim 23424 df-flf 23425 df-cfil 24753 df-cau 24754 df-cmet 24755 df-grpo 29723 df-gid 29724 df-ginv 29725 df-gdiv 29726 df-ablo 29775 df-vc 29789 df-nv 29822 df-va 29825 df-ba 29826 df-sm 29827 df-0v 29828 df-vs 29829 df-nmcv 29830 df-ims 29831 df-ssp 29952 df-ph 30043 df-cbn 30093 df-hnorm 30198 df-hba 30199 df-hvsub 30201 df-hlim 30202 df-hcau 30203 df-sh 30437 df-ch 30451 df-oc 30482 df-ch0 30483 df-chj 30540 |
This theorem is referenced by: chj00i 30717 chj0 30727 nonbooli 30881 atoml2i 31613 atabsi 31631 |
Copyright terms: Public domain | W3C validator |