HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjcli Structured version   Visualization version   GIF version

Theorem chjcli 31254
Description: Closure of C join. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion
Ref Expression
chjcli (𝐴 𝐵) ∈ C

Proof of Theorem chjcli
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chshii 31024 . 2 𝐴S
3 chjcl.2 . . 3 𝐵C
43chshii 31024 . 2 𝐵S
52, 4shjcli 31172 1 (𝐴 𝐵) ∈ C
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  (class class class)co 7414   C cch 30726   chj 30730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209  ax-mulf 11210  ax-hilex 30796  ax-hfvadd 30797  ax-hvcom 30798  ax-hvass 30799  ax-hv0cl 30800  ax-hvaddid 30801  ax-hfvmul 30802  ax-hvmulid 30803  ax-hvmulass 30804  ax-hvdistr1 30805  ax-hvdistr2 30806  ax-hvmul0 30807  ax-hfi 30876  ax-his1 30879  ax-his2 30880  ax-his3 30881  ax-his4 30882  ax-hcompl 30999
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-fi 9426  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-ioo 13352  df-icc 13355  df-fz 13509  df-fzo 13652  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-sum 15657  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-rest 17395  df-topn 17396  df-0g 17414  df-gsum 17415  df-topgen 17416  df-pt 17417  df-prds 17420  df-xrs 17475  df-qtop 17480  df-imas 17481  df-xps 17483  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-mulg 19015  df-cntz 19259  df-cmn 19728  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-cnfld 21267  df-top 22783  df-topon 22800  df-topsp 22822  df-bases 22836  df-cn 23118  df-cnp 23119  df-lm 23120  df-haus 23206  df-tx 23453  df-hmeo 23646  df-xms 24213  df-ms 24214  df-tms 24215  df-cau 25171  df-grpo 30290  df-gid 30291  df-ginv 30292  df-gdiv 30293  df-ablo 30342  df-vc 30356  df-nv 30389  df-va 30392  df-ba 30393  df-sm 30394  df-0v 30395  df-vs 30396  df-nmcv 30397  df-ims 30398  df-dip 30498  df-hnorm 30765  df-hvsub 30768  df-hlim 30769  df-hcau 30770  df-sh 31004  df-ch 31018  df-oc 31049  df-chj 31107
This theorem is referenced by:  chdmm1i  31274  chjassi  31283  chj1i  31286  chj4i  31320  lejdii  31335  pjoml2i  31382  pjoml3i  31383  pjoml4i  31384  pjoml5i  31385  cmcmlem  31388  cmbr2i  31393  cmj1i  31401  cmj2i  31402  fh3i  31420  fh4i  31421  qlaxr3i  31433  osumcor2i  31441  spansnji  31443  5oai  31458  3oalem5  31463  3oalem6  31464  3oai  31465  pjdsi  31509  pjds3i  31510  mayete3i  31525  mayetes3i  31526  pjscji  31967  pjci  31997  stlei  32037  golem2  32069  goeqi  32070  stcltrlem2  32074  mdslle1i  32114  mdslj1i  32116  mdslj2i  32117  mdslmd1lem1  32122  mdslmd1lem2  32123  mdslmd1i  32126  mdslmd2i  32127  mdsldmd1i  32128  mdexchi  32132  cvexchi  32166  atabsi  32198  atabs2i  32199  mdsymlem6  32205  sumdmdlem2  32216  dmdbr5ati  32219  mdcompli  32226  dmdcompli  32227
  Copyright terms: Public domain W3C validator