HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjcli Structured version   Visualization version   GIF version

Theorem chjcli 31143
Description: Closure of C join. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion
Ref Expression
chjcli (𝐴 𝐵) ∈ C

Proof of Theorem chjcli
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chshii 30913 . 2 𝐴S
3 chjcl.2 . . 3 𝐵C
43chshii 30913 . 2 𝐵S
52, 4shjcli 31061 1 (𝐴 𝐵) ∈ C
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  (class class class)co 7412   C cch 30615   chj 30619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196  ax-hilex 30685  ax-hfvadd 30686  ax-hvcom 30687  ax-hvass 30688  ax-hv0cl 30689  ax-hvaddid 30690  ax-hfvmul 30691  ax-hvmulid 30692  ax-hvmulass 30693  ax-hvdistr1 30694  ax-hvdistr2 30695  ax-hvmul0 30696  ax-hfi 30765  ax-his1 30768  ax-his2 30769  ax-his3 30770  ax-his4 30771  ax-hcompl 30888
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-icc 13338  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-sum 15640  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cn 23051  df-cnp 23052  df-lm 23053  df-haus 23139  df-tx 23386  df-hmeo 23579  df-xms 24146  df-ms 24147  df-tms 24148  df-cau 25104  df-grpo 30179  df-gid 30180  df-ginv 30181  df-gdiv 30182  df-ablo 30231  df-vc 30245  df-nv 30278  df-va 30281  df-ba 30282  df-sm 30283  df-0v 30284  df-vs 30285  df-nmcv 30286  df-ims 30287  df-dip 30387  df-hnorm 30654  df-hvsub 30657  df-hlim 30658  df-hcau 30659  df-sh 30893  df-ch 30907  df-oc 30938  df-chj 30996
This theorem is referenced by:  chdmm1i  31163  chjassi  31172  chj1i  31175  chj4i  31209  lejdii  31224  pjoml2i  31271  pjoml3i  31272  pjoml4i  31273  pjoml5i  31274  cmcmlem  31277  cmbr2i  31282  cmj1i  31290  cmj2i  31291  fh3i  31309  fh4i  31310  qlaxr3i  31322  osumcor2i  31330  spansnji  31332  5oai  31347  3oalem5  31352  3oalem6  31353  3oai  31354  pjdsi  31398  pjds3i  31399  mayete3i  31414  mayetes3i  31415  pjscji  31856  pjci  31886  stlei  31926  golem2  31958  goeqi  31959  stcltrlem2  31963  mdslle1i  32003  mdslj1i  32005  mdslj2i  32006  mdslmd1lem1  32011  mdslmd1lem2  32012  mdslmd1i  32015  mdslmd2i  32016  mdsldmd1i  32017  mdexchi  32021  cvexchi  32055  atabsi  32087  atabs2i  32088  mdsymlem6  32094  sumdmdlem2  32105  dmdbr5ati  32108  mdcompli  32115  dmdcompli  32116
  Copyright terms: Public domain W3C validator