MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvscl Structured version   Visualization version   GIF version

Theorem clmvscl 25044
Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl 20840. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.)
Hypotheses
Ref Expression
clmvscl.v 𝑉 = (Base‘𝑊)
clmvscl.f 𝐹 = (Scalar‘𝑊)
clmvscl.s · = ( ·𝑠𝑊)
clmvscl.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
clmvscl ((𝑊 ∈ ℂMod ∧ 𝑄𝐾𝑋𝑉) → (𝑄 · 𝑋) ∈ 𝑉)

Proof of Theorem clmvscl
StepHypRef Expression
1 clmlmod 25023 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 clmvscl.v . . 3 𝑉 = (Base‘𝑊)
3 clmvscl.f . . 3 𝐹 = (Scalar‘𝑊)
4 clmvscl.s . . 3 · = ( ·𝑠𝑊)
5 clmvscl.k . . 3 𝐾 = (Base‘𝐹)
62, 3, 4, 5lmodvscl 20840 . 2 ((𝑊 ∈ LMod ∧ 𝑄𝐾𝑋𝑉) → (𝑄 · 𝑋) ∈ 𝑉)
71, 6syl3an1 1163 1 ((𝑊 ∈ ℂMod ∧ 𝑄𝐾𝑋𝑉) → (𝑄 · 𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  LModclmod 20822  ℂModcclm 25018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-lmod 20824  df-clm 25019
This theorem is referenced by:  clmpm1dir  25059  clmnegsubdi2  25061  clmsub4  25062  clmvsubval2  25066  clmvz  25067  nmoleub2lem3  25071  nmoleub3  25075  ncvspi  25113
  Copyright terms: Public domain W3C validator