| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmvscl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl 20840. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
| Ref | Expression |
|---|---|
| clmvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
| clmvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| clmvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| clmvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| clmvscl | ⊢ ((𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑄 · 𝑋) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmlmod 25023 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
| 2 | clmvscl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | clmvscl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | clmvscl.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | clmvscl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | 2, 3, 4, 5 | lmodvscl 20840 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑄 · 𝑋) ∈ 𝑉) |
| 7 | 1, 6 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑄 · 𝑋) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Scalarcsca 17279 ·𝑠 cvsca 17280 LModclmod 20822 ℂModcclm 25018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-lmod 20824 df-clm 25019 |
| This theorem is referenced by: clmpm1dir 25059 clmnegsubdi2 25061 clmsub4 25062 clmvsubval2 25066 clmvz 25067 nmoleub2lem3 25071 nmoleub3 25075 ncvspi 25113 |
| Copyright terms: Public domain | W3C validator |