MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvscl Structured version   Visualization version   GIF version

Theorem clmvscl 25018
Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl 20815. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.)
Hypotheses
Ref Expression
clmvscl.v 𝑉 = (Base‘𝑊)
clmvscl.f 𝐹 = (Scalar‘𝑊)
clmvscl.s · = ( ·𝑠𝑊)
clmvscl.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
clmvscl ((𝑊 ∈ ℂMod ∧ 𝑄𝐾𝑋𝑉) → (𝑄 · 𝑋) ∈ 𝑉)

Proof of Theorem clmvscl
StepHypRef Expression
1 clmlmod 24997 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 clmvscl.v . . 3 𝑉 = (Base‘𝑊)
3 clmvscl.f . . 3 𝐹 = (Scalar‘𝑊)
4 clmvscl.s . . 3 · = ( ·𝑠𝑊)
5 clmvscl.k . . 3 𝐾 = (Base‘𝐹)
62, 3, 4, 5lmodvscl 20815 . 2 ((𝑊 ∈ LMod ∧ 𝑄𝐾𝑋𝑉) → (𝑄 · 𝑋) ∈ 𝑉)
71, 6syl3an1 1163 1 ((𝑊 ∈ ℂMod ∧ 𝑄𝐾𝑋𝑉) → (𝑄 · 𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  Basecbs 17124  Scalarcsca 17168   ·𝑠 cvsca 17169  LModclmod 20797  ℂModcclm 24992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6444  df-fv 6496  df-ov 7357  df-lmod 20799  df-clm 24993
This theorem is referenced by:  clmpm1dir  25033  clmnegsubdi2  25035  clmsub4  25036  clmvsubval2  25040  clmvz  25041  nmoleub2lem3  25045  nmoleub3  25049  ncvspi  25086
  Copyright terms: Public domain W3C validator