Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmvscl | Structured version Visualization version GIF version |
Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl 20055. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
Ref | Expression |
---|---|
clmvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
clmvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
clmvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
clmvscl | ⊢ ((𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑄 · 𝑋) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 24136 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | clmvscl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | clmvscl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | clmvscl.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | clmvscl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
6 | 2, 3, 4, 5 | lmodvscl 20055 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑄 · 𝑋) ∈ 𝑉) |
7 | 1, 6 | syl3an1 1161 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑄 · 𝑋) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 LModclmod 20038 ℂModcclm 24131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-lmod 20040 df-clm 24132 |
This theorem is referenced by: clmpm1dir 24172 clmnegsubdi2 24174 clmsub4 24175 clmvsubval2 24179 clmvz 24180 nmoleub2lem3 24184 nmoleub3 24188 ncvspi 24225 |
Copyright terms: Public domain | W3C validator |