MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem3 Structured version   Visualization version   GIF version

Theorem nmoleub2lem3 25167
Description: Lemma for nmoleub2a 25169 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem3.p · = ( ·𝑠𝑆)
nmoleub2lem3.1 (𝜑𝐴 ∈ ℝ)
nmoleub2lem3.2 (𝜑 → 0 ≤ 𝐴)
nmoleub2lem3.3 (𝜑𝐵𝑉)
nmoleub2lem3.4 (𝜑𝐵 ≠ (0g𝑆))
nmoleub2lem3.5 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
nmoleub2lem3.6 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
Assertion
Ref Expression
nmoleub2lem3 ¬ 𝜑
Distinct variable groups:   𝐴,𝑟   𝐹,𝑟   𝐿,𝑟   𝑀,𝑟   𝜑,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hints:   𝑆(𝑟)   𝑇(𝑟)   · (𝑟)   𝐺(𝑟)   𝐾(𝑟)   𝑁(𝑟)   𝑉(𝑟)

Proof of Theorem nmoleub2lem3
StepHypRef Expression
1 simprl 770 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
2 qre 13018 . . . . . 6 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
32ad2antlr 726 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ ℝ)
4 nmoleub2lem3.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
65rpred 13099 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
74, 6remulcld 11320 . . . . . . 7 (𝜑 → (𝐴 · 𝑅) ∈ ℝ)
8 nmoleub2.t . . . . . . . . . . 11 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
98elin1d 4227 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmMod)
10 nlmngp 24719 . . . . . . . . . 10 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
12 nmoleub2.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
13 nmoleub2.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
14 eqid 2740 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
1513, 14lmhmf 21056 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
1612, 15syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
17 nmoleub2lem3.3 . . . . . . . . . 10 (𝜑𝐵𝑉)
1816, 17ffvelcdmd 7119 . . . . . . . . 9 (𝜑 → (𝐹𝐵) ∈ (Base‘𝑇))
19 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
2014, 19nmcl 24650 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
2111, 18, 20syl2anc 583 . . . . . . . 8 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ)
22 0red 11293 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
23 nmoleub2.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 4227 . . . . . . . . . . . 12 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 24719 . . . . . . . . . . . 12 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ NrmGrp)
27 nmoleub2.l . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
2813, 27nmcl 24650 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → (𝐿𝐵) ∈ ℝ)
2926, 17, 28syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐿𝐵) ∈ ℝ)
304, 29remulcld 11320 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) ∈ ℝ)
31 nmoleub2lem3.2 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3213, 27nmge0 24651 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝐿𝐵))
3326, 17, 32syl2anc 583 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝐿𝐵))
344, 29, 31, 33mulge0d 11867 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐴 · (𝐿𝐵)))
35 nmoleub2lem3.6 . . . . . . . . . 10 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
3630, 21ltnled 11437 . . . . . . . . . 10 (𝜑 → ((𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)) ↔ ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵))))
3735, 36mpbird 257 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)))
3822, 30, 21, 34, 37lelttrd 11448 . . . . . . . 8 (𝜑 → 0 < (𝑀‘(𝐹𝐵)))
3921, 38elrpd 13096 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ+)
407, 39rerpdivcld 13130 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4140ad2antrr 725 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4212ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
43 nmoleub2a.5 . . . . . . . . . . . . . 14 (𝜑 → ℚ ⊆ 𝐾)
4443sselda 4008 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℚ) → 𝑟𝐾)
4544adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟𝐾)
4617ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐵𝑉)
47 nmoleub2.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑆)
48 nmoleub2.w . . . . . . . . . . . . 13 𝐾 = (Base‘𝐺)
49 nmoleub2lem3.p . . . . . . . . . . . . 13 · = ( ·𝑠𝑆)
50 eqid 2740 . . . . . . . . . . . . 13 ( ·𝑠𝑇) = ( ·𝑠𝑇)
5147, 48, 13, 49, 50lmhmlin 21057 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑟𝐾𝐵𝑉) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5242, 45, 46, 51syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5352fveq2d 6924 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))))
549ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑇 ∈ NrmMod)
55 eqid 2740 . . . . . . . . . . . . . . . 16 (Scalar‘𝑇) = (Scalar‘𝑇)
5647, 55lmhmsca 21052 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺)
5742, 56syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Scalar‘𝑇) = 𝐺)
5857fveq2d 6924 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺))
5958, 48eqtr4di 2798 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = 𝐾)
6045, 59eleqtrrd 2847 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ (Base‘(Scalar‘𝑇)))
6118ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹𝐵) ∈ (Base‘𝑇))
62 eqid 2740 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
63 eqid 2740 . . . . . . . . . . . 12 (norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇))
6414, 19, 50, 55, 62, 63nmvs 24718 . . . . . . . . . . 11 ((𝑇 ∈ NrmMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6554, 60, 61, 64syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6657fveq2d 6924 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺))
6766fveq1d 6922 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = ((norm‘𝐺)‘𝑟))
6823elin2d 4228 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ ℂMod)
6968ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ ℂMod)
7047, 48clmabs 25135 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
7169, 45, 70syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
72 0red 11293 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ∈ ℝ)
735rpge0d 13103 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑅)
744, 6, 31, 73mulge0d 11867 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐴 · 𝑅))
75 divge0 12164 . . . . . . . . . . . . . . . . . 18 ((((𝐴 · 𝑅) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝑅)) ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
767, 74, 21, 38, 75syl22anc 838 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7776ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7872, 41, 3, 77, 1lelttrd 11448 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 < 𝑟)
7972, 3, 78ltled 11438 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ 𝑟)
803, 79absidd 15471 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = 𝑟)
8171, 80eqtr3d 2782 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘𝐺)‘𝑟) = 𝑟)
8267, 81eqtrd 2780 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = 𝑟)
8382oveq1d 7463 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8453, 65, 833eqtrd 2784 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8584oveq1d 7463 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) = ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅))
8613, 47, 49, 48clmvscl 25140 . . . . . . . . . 10 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾𝐵𝑉) → (𝑟 · 𝐵) ∈ 𝑉)
8769, 45, 46, 86syl3anc 1371 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · 𝐵) ∈ 𝑉)
8824ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ NrmMod)
89 eqid 2740 . . . . . . . . . . . . 13 (norm‘𝐺) = (norm‘𝐺)
9013, 27, 49, 47, 48, 89nmvs 24718 . . . . . . . . . . . 12 ((𝑆 ∈ NrmMod ∧ 𝑟𝐾𝐵𝑉) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9188, 45, 46, 90syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9281oveq1d 7463 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘𝐺)‘𝑟) · (𝐿𝐵)) = (𝑟 · (𝐿𝐵)))
9391, 92eqtrd 2780 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (𝑟 · (𝐿𝐵)))
94 simprr 772 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 < (𝑅 / (𝐿𝐵)))
956ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ)
96 nmoleub2lem3.4 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ (0g𝑆))
97 eqid 2740 . . . . . . . . . . . . . . . 16 (0g𝑆) = (0g𝑆)
9813, 27, 97nmrpcl 24654 . . . . . . . . . . . . . . 15 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉𝐵 ≠ (0g𝑆)) → (𝐿𝐵) ∈ ℝ+)
9926, 17, 96, 98syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑 → (𝐿𝐵) ∈ ℝ+)
10099rpregt0d 13105 . . . . . . . . . . . . 13 (𝜑 → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
101100ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
102 ltmuldiv 12168 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
1033, 95, 101, 102syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
10494, 103mpbird 257 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝐿𝐵)) < 𝑅)
10593, 104eqbrtrd 5188 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) < 𝑅)
106 nmoleub2lem3.5 . . . . . . . . . 10 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
107106ad2antrr 725 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
10887, 105, 107mp2d 49 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)
10985, 108eqbrtrrd 5190 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴)
11021ad2antrr 725 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
1113, 110remulcld 11320 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ∈ ℝ)
1124ad2antrr 725 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐴 ∈ ℝ)
1135ad2antrr 725 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ+)
114111, 112, 113ledivmul2d 13153 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴 ↔ (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅)))
115109, 114mpbid 232 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅))
116112, 95remulcld 11320 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐴 · 𝑅) ∈ ℝ)
11721, 38jca 511 . . . . . . . 8 (𝜑 → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
118117ad2antrr 725 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
119 lemuldiv 12175 . . . . . . 7 ((𝑟 ∈ ℝ ∧ (𝐴 · 𝑅) ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
1203, 116, 118, 119syl3anc 1371 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
121115, 120mpbid 232 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
1223, 41, 121lensymd 11441 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ¬ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
1231, 122pm2.21dd 195 . . 3 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
1246, 99rerpdivcld 13130 . . . 4 (𝜑 → (𝑅 / (𝐿𝐵)) ∈ ℝ)
1254recnd 11318 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1266recnd 11318 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
12729recnd 11318 . . . . . . 7 (𝜑 → (𝐿𝐵) ∈ ℂ)
128 mulass 11272 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝐴 · (𝑅 · (𝐿𝐵))))
129 mul12 11455 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → (𝐴 · (𝑅 · (𝐿𝐵))) = (𝑅 · (𝐴 · (𝐿𝐵))))
130128, 129eqtrd 2780 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
131125, 126, 127, 130syl3anc 1371 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
13230, 21, 5, 37ltmul2dd 13155 . . . . . 6 (𝜑 → (𝑅 · (𝐴 · (𝐿𝐵))) < (𝑅 · (𝑀‘(𝐹𝐵))))
133131, 132eqbrtrd 5188 . . . . 5 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))))
134 lt2mul2div 12173 . . . . . 6 ((((𝐴 · 𝑅) ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) ∧ (𝑅 ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))) → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
1357, 100, 6, 117, 134syl22anc 838 . . . . 5 (𝜑 → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
136133, 135mpbid 232 . . . 4 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵)))
137 qbtwnre 13261 . . . 4 ((((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ ∧ (𝑅 / (𝐿𝐵)) ∈ ℝ ∧ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))) → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
13840, 124, 136, 137syl3anc 1371 . . 3 (𝜑 → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
139123, 138r19.29a 3168 . 2 (𝜑 → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
140139, 35pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cin 3975  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   · cmul 11189  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  cq 13013  +crp 13057  abscabs 15283  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   LMHom clmhm 21041  normcnm 24610  NrmGrpcngp 24611  NrmModcnlm 24614   normOp cnmo 24747  ℂModcclm 25114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-subg 19163  df-ghm 19253  df-cmn 19824  df-mgp 20162  df-ring 20262  df-cring 20263  df-subrg 20597  df-lmod 20882  df-lmhm 21044  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617  df-nlm 24620  df-clm 25115
This theorem is referenced by:  nmoleub2lem2  25168
  Copyright terms: Public domain W3C validator