MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem3 Structured version   Visualization version   GIF version

Theorem nmoleub2lem3 23134
Description: Lemma for nmoleub2a 23136 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem3.p · = ( ·𝑠𝑆)
nmoleub2lem3.1 (𝜑𝐴 ∈ ℝ)
nmoleub2lem3.2 (𝜑 → 0 ≤ 𝐴)
nmoleub2lem3.3 (𝜑𝐵𝑉)
nmoleub2lem3.4 (𝜑𝐵 ≠ (0g𝑆))
nmoleub2lem3.5 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
nmoleub2lem3.6 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
Assertion
Ref Expression
nmoleub2lem3 ¬ 𝜑
Distinct variable groups:   𝐴,𝑟   𝐹,𝑟   𝐿,𝑟   𝑀,𝑟   𝜑,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hints:   𝑆(𝑟)   𝑇(𝑟)   · (𝑟)   𝐺(𝑟)   𝐾(𝑟)   𝑁(𝑟)   𝑉(𝑟)

Proof of Theorem nmoleub2lem3
StepHypRef Expression
1 simprl 754 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
2 qre 11996 . . . . . 6 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
32ad2antlr 706 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ ℝ)
4 nmoleub2lem3.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
65rpred 12075 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
74, 6remulcld 10272 . . . . . . 7 (𝜑 → (𝐴 · 𝑅) ∈ ℝ)
8 nmoleub2.t . . . . . . . . . . 11 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
98elin1d 3953 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmMod)
10 nlmngp 22701 . . . . . . . . . 10 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
12 nmoleub2.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
13 nmoleub2.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
14 eqid 2771 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
1513, 14lmhmf 19247 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
1612, 15syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
17 nmoleub2lem3.3 . . . . . . . . . 10 (𝜑𝐵𝑉)
1816, 17ffvelrnd 6503 . . . . . . . . 9 (𝜑 → (𝐹𝐵) ∈ (Base‘𝑇))
19 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
2014, 19nmcl 22640 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
2111, 18, 20syl2anc 573 . . . . . . . 8 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ)
22 0red 10243 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
23 nmoleub2.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 3953 . . . . . . . . . . . 12 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 22701 . . . . . . . . . . . 12 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ NrmGrp)
27 nmoleub2.l . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
2813, 27nmcl 22640 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → (𝐿𝐵) ∈ ℝ)
2926, 17, 28syl2anc 573 . . . . . . . . . 10 (𝜑 → (𝐿𝐵) ∈ ℝ)
304, 29remulcld 10272 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) ∈ ℝ)
31 nmoleub2lem3.2 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3213, 27nmge0 22641 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝐿𝐵))
3326, 17, 32syl2anc 573 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝐿𝐵))
344, 29, 31, 33mulge0d 10806 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐴 · (𝐿𝐵)))
35 nmoleub2lem3.6 . . . . . . . . . 10 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
3630, 21ltnled 10386 . . . . . . . . . 10 (𝜑 → ((𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)) ↔ ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵))))
3735, 36mpbird 247 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)))
3822, 30, 21, 34, 37lelttrd 10397 . . . . . . . 8 (𝜑 → 0 < (𝑀‘(𝐹𝐵)))
3921, 38elrpd 12072 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ+)
407, 39rerpdivcld 12106 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4140ad2antrr 705 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4212ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
43 nmoleub2a.5 . . . . . . . . . . . . . 14 (𝜑 → ℚ ⊆ 𝐾)
4443sselda 3752 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℚ) → 𝑟𝐾)
4544adantr 466 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟𝐾)
4617ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐵𝑉)
47 nmoleub2.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑆)
48 nmoleub2.w . . . . . . . . . . . . 13 𝐾 = (Base‘𝐺)
49 nmoleub2lem3.p . . . . . . . . . . . . 13 · = ( ·𝑠𝑆)
50 eqid 2771 . . . . . . . . . . . . 13 ( ·𝑠𝑇) = ( ·𝑠𝑇)
5147, 48, 13, 49, 50lmhmlin 19248 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑟𝐾𝐵𝑉) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5242, 45, 46, 51syl3anc 1476 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5352fveq2d 6336 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))))
549ad2antrr 705 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑇 ∈ NrmMod)
55 eqid 2771 . . . . . . . . . . . . . . . 16 (Scalar‘𝑇) = (Scalar‘𝑇)
5647, 55lmhmsca 19243 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺)
5742, 56syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Scalar‘𝑇) = 𝐺)
5857fveq2d 6336 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺))
5958, 48syl6eqr 2823 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = 𝐾)
6045, 59eleqtrrd 2853 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ (Base‘(Scalar‘𝑇)))
6118ad2antrr 705 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹𝐵) ∈ (Base‘𝑇))
62 eqid 2771 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
63 eqid 2771 . . . . . . . . . . . 12 (norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇))
6414, 19, 50, 55, 62, 63nmvs 22700 . . . . . . . . . . 11 ((𝑇 ∈ NrmMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6554, 60, 61, 64syl3anc 1476 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6657fveq2d 6336 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺))
6766fveq1d 6334 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = ((norm‘𝐺)‘𝑟))
6823elin2d 3954 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ ℂMod)
6968ad2antrr 705 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ ℂMod)
7047, 48clmabs 23102 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
7169, 45, 70syl2anc 573 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
72 0red 10243 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ∈ ℝ)
735rpge0d 12079 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑅)
744, 6, 31, 73mulge0d 10806 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐴 · 𝑅))
75 divge0 11094 . . . . . . . . . . . . . . . . . 18 ((((𝐴 · 𝑅) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝑅)) ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
767, 74, 21, 38, 75syl22anc 1477 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7776ad2antrr 705 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7872, 41, 3, 77, 1lelttrd 10397 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 < 𝑟)
7972, 3, 78ltled 10387 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ 𝑟)
803, 79absidd 14369 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = 𝑟)
8171, 80eqtr3d 2807 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘𝐺)‘𝑟) = 𝑟)
8267, 81eqtrd 2805 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = 𝑟)
8382oveq1d 6808 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8453, 65, 833eqtrd 2809 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8584oveq1d 6808 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) = ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅))
8613, 47, 49, 48clmvscl 23107 . . . . . . . . . 10 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾𝐵𝑉) → (𝑟 · 𝐵) ∈ 𝑉)
8769, 45, 46, 86syl3anc 1476 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · 𝐵) ∈ 𝑉)
8824ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ NrmMod)
89 eqid 2771 . . . . . . . . . . . . 13 (norm‘𝐺) = (norm‘𝐺)
9013, 27, 49, 47, 48, 89nmvs 22700 . . . . . . . . . . . 12 ((𝑆 ∈ NrmMod ∧ 𝑟𝐾𝐵𝑉) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9188, 45, 46, 90syl3anc 1476 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9281oveq1d 6808 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘𝐺)‘𝑟) · (𝐿𝐵)) = (𝑟 · (𝐿𝐵)))
9391, 92eqtrd 2805 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (𝑟 · (𝐿𝐵)))
94 simprr 756 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 < (𝑅 / (𝐿𝐵)))
956ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ)
96 nmoleub2lem3.4 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ (0g𝑆))
97 eqid 2771 . . . . . . . . . . . . . . . 16 (0g𝑆) = (0g𝑆)
9813, 27, 97nmrpcl 22644 . . . . . . . . . . . . . . 15 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉𝐵 ≠ (0g𝑆)) → (𝐿𝐵) ∈ ℝ+)
9926, 17, 96, 98syl3anc 1476 . . . . . . . . . . . . . 14 (𝜑 → (𝐿𝐵) ∈ ℝ+)
10099rpregt0d 12081 . . . . . . . . . . . . 13 (𝜑 → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
101100ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
102 ltmuldiv 11098 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
1033, 95, 101, 102syl3anc 1476 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
10494, 103mpbird 247 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝐿𝐵)) < 𝑅)
10593, 104eqbrtrd 4808 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) < 𝑅)
106 nmoleub2lem3.5 . . . . . . . . . 10 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
107106ad2antrr 705 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
10887, 105, 107mp2d 49 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)
10985, 108eqbrtrrd 4810 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴)
11021ad2antrr 705 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
1113, 110remulcld 10272 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ∈ ℝ)
1124ad2antrr 705 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐴 ∈ ℝ)
1135ad2antrr 705 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ+)
114111, 112, 113ledivmul2d 12129 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴 ↔ (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅)))
115109, 114mpbid 222 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅))
116112, 95remulcld 10272 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐴 · 𝑅) ∈ ℝ)
11721, 38jca 501 . . . . . . . 8 (𝜑 → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
118117ad2antrr 705 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
119 lemuldiv 11105 . . . . . . 7 ((𝑟 ∈ ℝ ∧ (𝐴 · 𝑅) ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
1203, 116, 118, 119syl3anc 1476 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
121115, 120mpbid 222 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
1223, 41, 121lensymd 10390 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ¬ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
1231, 122pm2.21dd 186 . . 3 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
1246, 99rerpdivcld 12106 . . . 4 (𝜑 → (𝑅 / (𝐿𝐵)) ∈ ℝ)
1254recnd 10270 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1266recnd 10270 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
12729recnd 10270 . . . . . . 7 (𝜑 → (𝐿𝐵) ∈ ℂ)
128 mulass 10226 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝐴 · (𝑅 · (𝐿𝐵))))
129 mul12 10404 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → (𝐴 · (𝑅 · (𝐿𝐵))) = (𝑅 · (𝐴 · (𝐿𝐵))))
130128, 129eqtrd 2805 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
131125, 126, 127, 130syl3anc 1476 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
13230, 21, 5, 37ltmul2dd 12131 . . . . . 6 (𝜑 → (𝑅 · (𝐴 · (𝐿𝐵))) < (𝑅 · (𝑀‘(𝐹𝐵))))
133131, 132eqbrtrd 4808 . . . . 5 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))))
134 lt2mul2div 11103 . . . . . 6 ((((𝐴 · 𝑅) ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) ∧ (𝑅 ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))) → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
1357, 100, 6, 117, 134syl22anc 1477 . . . . 5 (𝜑 → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
136133, 135mpbid 222 . . . 4 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵)))
137 qbtwnre 12235 . . . 4 ((((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ ∧ (𝑅 / (𝐿𝐵)) ∈ ℝ ∧ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))) → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
13840, 124, 136, 137syl3anc 1476 . . 3 (𝜑 → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
139123, 138r19.29a 3226 . 2 (𝜑 → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
140139, 35pm2.65i 185 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cin 3722  wss 3723   class class class wbr 4786  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138   · cmul 10143  *cxr 10275   < clt 10276  cle 10277   / cdiv 10886  cq 11991  +crp 12035  abscabs 14182  Basecbs 16064  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308   LMHom clmhm 19232  normcnm 22601  NrmGrpcngp 22602  NrmModcnlm 22605   normOp cnmo 22729  ℂModcclm 23081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-topgen 16312  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-subg 17799  df-ghm 17866  df-cmn 18402  df-mgp 18698  df-ring 18757  df-cring 18758  df-subrg 18988  df-lmod 19075  df-lmhm 19235  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-xms 22345  df-ms 22346  df-nm 22607  df-ngp 22608  df-nlm 22611  df-clm 23082
This theorem is referenced by:  nmoleub2lem2  23135
  Copyright terms: Public domain W3C validator