MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem3 Structured version   Visualization version   GIF version

Theorem nmoleub2lem3 25085
Description: Lemma for nmoleub2a 25087 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem3.p · = ( ·𝑠𝑆)
nmoleub2lem3.1 (𝜑𝐴 ∈ ℝ)
nmoleub2lem3.2 (𝜑 → 0 ≤ 𝐴)
nmoleub2lem3.3 (𝜑𝐵𝑉)
nmoleub2lem3.4 (𝜑𝐵 ≠ (0g𝑆))
nmoleub2lem3.5 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
nmoleub2lem3.6 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
Assertion
Ref Expression
nmoleub2lem3 ¬ 𝜑
Distinct variable groups:   𝐴,𝑟   𝐹,𝑟   𝐿,𝑟   𝑀,𝑟   𝜑,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hints:   𝑆(𝑟)   𝑇(𝑟)   · (𝑟)   𝐺(𝑟)   𝐾(𝑟)   𝑁(𝑟)   𝑉(𝑟)

Proof of Theorem nmoleub2lem3
StepHypRef Expression
1 simprl 770 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
2 qre 12977 . . . . . 6 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
32ad2antlr 727 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ ℝ)
4 nmoleub2lem3.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
65rpred 13059 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
74, 6remulcld 11273 . . . . . . 7 (𝜑 → (𝐴 · 𝑅) ∈ ℝ)
8 nmoleub2.t . . . . . . . . . . 11 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
98elin1d 4184 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmMod)
10 nlmngp 24635 . . . . . . . . . 10 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
12 nmoleub2.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
13 nmoleub2.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
14 eqid 2734 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
1513, 14lmhmf 21002 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
1612, 15syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
17 nmoleub2lem3.3 . . . . . . . . . 10 (𝜑𝐵𝑉)
1816, 17ffvelcdmd 7085 . . . . . . . . 9 (𝜑 → (𝐹𝐵) ∈ (Base‘𝑇))
19 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
2014, 19nmcl 24574 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
2111, 18, 20syl2anc 584 . . . . . . . 8 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ)
22 0red 11246 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
23 nmoleub2.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 4184 . . . . . . . . . . . 12 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 24635 . . . . . . . . . . . 12 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ NrmGrp)
27 nmoleub2.l . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
2813, 27nmcl 24574 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → (𝐿𝐵) ∈ ℝ)
2926, 17, 28syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐿𝐵) ∈ ℝ)
304, 29remulcld 11273 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) ∈ ℝ)
31 nmoleub2lem3.2 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3213, 27nmge0 24575 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝐿𝐵))
3326, 17, 32syl2anc 584 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝐿𝐵))
344, 29, 31, 33mulge0d 11822 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐴 · (𝐿𝐵)))
35 nmoleub2lem3.6 . . . . . . . . . 10 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
3630, 21ltnled 11390 . . . . . . . . . 10 (𝜑 → ((𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)) ↔ ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵))))
3735, 36mpbird 257 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)))
3822, 30, 21, 34, 37lelttrd 11401 . . . . . . . 8 (𝜑 → 0 < (𝑀‘(𝐹𝐵)))
3921, 38elrpd 13056 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ+)
407, 39rerpdivcld 13090 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4140ad2antrr 726 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4212ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
43 nmoleub2a.5 . . . . . . . . . . . . . 14 (𝜑 → ℚ ⊆ 𝐾)
4443sselda 3963 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℚ) → 𝑟𝐾)
4544adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟𝐾)
4617ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐵𝑉)
47 nmoleub2.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑆)
48 nmoleub2.w . . . . . . . . . . . . 13 𝐾 = (Base‘𝐺)
49 nmoleub2lem3.p . . . . . . . . . . . . 13 · = ( ·𝑠𝑆)
50 eqid 2734 . . . . . . . . . . . . 13 ( ·𝑠𝑇) = ( ·𝑠𝑇)
5147, 48, 13, 49, 50lmhmlin 21003 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑟𝐾𝐵𝑉) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5242, 45, 46, 51syl3anc 1372 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5352fveq2d 6890 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))))
549ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑇 ∈ NrmMod)
55 eqid 2734 . . . . . . . . . . . . . . . 16 (Scalar‘𝑇) = (Scalar‘𝑇)
5647, 55lmhmsca 20998 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺)
5742, 56syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Scalar‘𝑇) = 𝐺)
5857fveq2d 6890 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺))
5958, 48eqtr4di 2787 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = 𝐾)
6045, 59eleqtrrd 2836 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ (Base‘(Scalar‘𝑇)))
6118ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹𝐵) ∈ (Base‘𝑇))
62 eqid 2734 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
63 eqid 2734 . . . . . . . . . . . 12 (norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇))
6414, 19, 50, 55, 62, 63nmvs 24634 . . . . . . . . . . 11 ((𝑇 ∈ NrmMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6554, 60, 61, 64syl3anc 1372 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6657fveq2d 6890 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺))
6766fveq1d 6888 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = ((norm‘𝐺)‘𝑟))
6823elin2d 4185 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ ℂMod)
6968ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ ℂMod)
7047, 48clmabs 25053 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
7169, 45, 70syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
72 0red 11246 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ∈ ℝ)
735rpge0d 13063 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑅)
744, 6, 31, 73mulge0d 11822 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐴 · 𝑅))
75 divge0 12119 . . . . . . . . . . . . . . . . . 18 ((((𝐴 · 𝑅) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝑅)) ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
767, 74, 21, 38, 75syl22anc 838 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7776ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7872, 41, 3, 77, 1lelttrd 11401 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 < 𝑟)
7972, 3, 78ltled 11391 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ 𝑟)
803, 79absidd 15444 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = 𝑟)
8171, 80eqtr3d 2771 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘𝐺)‘𝑟) = 𝑟)
8267, 81eqtrd 2769 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = 𝑟)
8382oveq1d 7428 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8453, 65, 833eqtrd 2773 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8584oveq1d 7428 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) = ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅))
8613, 47, 49, 48clmvscl 25058 . . . . . . . . . 10 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾𝐵𝑉) → (𝑟 · 𝐵) ∈ 𝑉)
8769, 45, 46, 86syl3anc 1372 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · 𝐵) ∈ 𝑉)
8824ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ NrmMod)
89 eqid 2734 . . . . . . . . . . . . 13 (norm‘𝐺) = (norm‘𝐺)
9013, 27, 49, 47, 48, 89nmvs 24634 . . . . . . . . . . . 12 ((𝑆 ∈ NrmMod ∧ 𝑟𝐾𝐵𝑉) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9188, 45, 46, 90syl3anc 1372 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9281oveq1d 7428 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘𝐺)‘𝑟) · (𝐿𝐵)) = (𝑟 · (𝐿𝐵)))
9391, 92eqtrd 2769 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (𝑟 · (𝐿𝐵)))
94 simprr 772 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 < (𝑅 / (𝐿𝐵)))
956ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ)
96 nmoleub2lem3.4 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ (0g𝑆))
97 eqid 2734 . . . . . . . . . . . . . . . 16 (0g𝑆) = (0g𝑆)
9813, 27, 97nmrpcl 24578 . . . . . . . . . . . . . . 15 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉𝐵 ≠ (0g𝑆)) → (𝐿𝐵) ∈ ℝ+)
9926, 17, 96, 98syl3anc 1372 . . . . . . . . . . . . . 14 (𝜑 → (𝐿𝐵) ∈ ℝ+)
10099rpregt0d 13065 . . . . . . . . . . . . 13 (𝜑 → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
101100ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
102 ltmuldiv 12123 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
1033, 95, 101, 102syl3anc 1372 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
10494, 103mpbird 257 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝐿𝐵)) < 𝑅)
10593, 104eqbrtrd 5145 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) < 𝑅)
106 nmoleub2lem3.5 . . . . . . . . . 10 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
107106ad2antrr 726 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
10887, 105, 107mp2d 49 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)
10985, 108eqbrtrrd 5147 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴)
11021ad2antrr 726 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
1113, 110remulcld 11273 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ∈ ℝ)
1124ad2antrr 726 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐴 ∈ ℝ)
1135ad2antrr 726 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ+)
114111, 112, 113ledivmul2d 13113 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴 ↔ (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅)))
115109, 114mpbid 232 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅))
116112, 95remulcld 11273 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐴 · 𝑅) ∈ ℝ)
11721, 38jca 511 . . . . . . . 8 (𝜑 → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
118117ad2antrr 726 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
119 lemuldiv 12130 . . . . . . 7 ((𝑟 ∈ ℝ ∧ (𝐴 · 𝑅) ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
1203, 116, 118, 119syl3anc 1372 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
121115, 120mpbid 232 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
1223, 41, 121lensymd 11394 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ¬ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
1231, 122pm2.21dd 195 . . 3 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
1246, 99rerpdivcld 13090 . . . 4 (𝜑 → (𝑅 / (𝐿𝐵)) ∈ ℝ)
1254recnd 11271 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1266recnd 11271 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
12729recnd 11271 . . . . . . 7 (𝜑 → (𝐿𝐵) ∈ ℂ)
128 mulass 11225 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝐴 · (𝑅 · (𝐿𝐵))))
129 mul12 11408 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → (𝐴 · (𝑅 · (𝐿𝐵))) = (𝑅 · (𝐴 · (𝐿𝐵))))
130128, 129eqtrd 2769 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
131125, 126, 127, 130syl3anc 1372 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
13230, 21, 5, 37ltmul2dd 13115 . . . . . 6 (𝜑 → (𝑅 · (𝐴 · (𝐿𝐵))) < (𝑅 · (𝑀‘(𝐹𝐵))))
133131, 132eqbrtrd 5145 . . . . 5 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))))
134 lt2mul2div 12128 . . . . . 6 ((((𝐴 · 𝑅) ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) ∧ (𝑅 ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))) → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
1357, 100, 6, 117, 134syl22anc 838 . . . . 5 (𝜑 → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
136133, 135mpbid 232 . . . 4 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵)))
137 qbtwnre 13223 . . . 4 ((((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ ∧ (𝑅 / (𝐿𝐵)) ∈ ℝ ∧ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))) → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
13840, 124, 136, 137syl3anc 1372 . . 3 (𝜑 → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
139123, 138r19.29a 3149 . 2 (𝜑 → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
140139, 35pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  cin 3930  wss 3931   class class class wbr 5123  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137   · cmul 11142  *cxr 11276   < clt 11277  cle 11278   / cdiv 11902  cq 12972  +crp 13016  abscabs 15256  Basecbs 17230  Scalarcsca 17277   ·𝑠 cvsca 17278  0gc0g 17456   LMHom clmhm 20987  normcnm 24534  NrmGrpcngp 24535  NrmModcnlm 24538   normOp cnmo 24663  ℂModcclm 25032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-0g 17458  df-topgen 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-subg 19111  df-ghm 19201  df-cmn 19769  df-mgp 20107  df-ring 20201  df-cring 20202  df-subrg 20539  df-lmod 20829  df-lmhm 20990  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-xms 24276  df-ms 24277  df-nm 24540  df-ngp 24541  df-nlm 24544  df-clm 25033
This theorem is referenced by:  nmoleub2lem2  25086
  Copyright terms: Public domain W3C validator