MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem3 Structured version   Visualization version   GIF version

Theorem nmoleub2lem3 24478
Description: Lemma for nmoleub2a 24480 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem3.p · = ( ·𝑠𝑆)
nmoleub2lem3.1 (𝜑𝐴 ∈ ℝ)
nmoleub2lem3.2 (𝜑 → 0 ≤ 𝐴)
nmoleub2lem3.3 (𝜑𝐵𝑉)
nmoleub2lem3.4 (𝜑𝐵 ≠ (0g𝑆))
nmoleub2lem3.5 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
nmoleub2lem3.6 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
Assertion
Ref Expression
nmoleub2lem3 ¬ 𝜑
Distinct variable groups:   𝐴,𝑟   𝐹,𝑟   𝐿,𝑟   𝑀,𝑟   𝜑,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hints:   𝑆(𝑟)   𝑇(𝑟)   · (𝑟)   𝐺(𝑟)   𝐾(𝑟)   𝑁(𝑟)   𝑉(𝑟)

Proof of Theorem nmoleub2lem3
StepHypRef Expression
1 simprl 769 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
2 qre 12878 . . . . . 6 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
32ad2antlr 725 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ ℝ)
4 nmoleub2lem3.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
65rpred 12957 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
74, 6remulcld 11185 . . . . . . 7 (𝜑 → (𝐴 · 𝑅) ∈ ℝ)
8 nmoleub2.t . . . . . . . . . . 11 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
98elin1d 4158 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmMod)
10 nlmngp 24041 . . . . . . . . . 10 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
12 nmoleub2.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
13 nmoleub2.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
14 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
1513, 14lmhmf 20495 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
1612, 15syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
17 nmoleub2lem3.3 . . . . . . . . . 10 (𝜑𝐵𝑉)
1816, 17ffvelcdmd 7036 . . . . . . . . 9 (𝜑 → (𝐹𝐵) ∈ (Base‘𝑇))
19 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
2014, 19nmcl 23972 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
2111, 18, 20syl2anc 584 . . . . . . . 8 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ)
22 0red 11158 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
23 nmoleub2.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 4158 . . . . . . . . . . . 12 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 24041 . . . . . . . . . . . 12 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ NrmGrp)
27 nmoleub2.l . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
2813, 27nmcl 23972 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → (𝐿𝐵) ∈ ℝ)
2926, 17, 28syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐿𝐵) ∈ ℝ)
304, 29remulcld 11185 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) ∈ ℝ)
31 nmoleub2lem3.2 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3213, 27nmge0 23973 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝐿𝐵))
3326, 17, 32syl2anc 584 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝐿𝐵))
344, 29, 31, 33mulge0d 11732 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐴 · (𝐿𝐵)))
35 nmoleub2lem3.6 . . . . . . . . . 10 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
3630, 21ltnled 11302 . . . . . . . . . 10 (𝜑 → ((𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)) ↔ ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵))))
3735, 36mpbird 256 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)))
3822, 30, 21, 34, 37lelttrd 11313 . . . . . . . 8 (𝜑 → 0 < (𝑀‘(𝐹𝐵)))
3921, 38elrpd 12954 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ+)
407, 39rerpdivcld 12988 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4140ad2antrr 724 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4212ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
43 nmoleub2a.5 . . . . . . . . . . . . . 14 (𝜑 → ℚ ⊆ 𝐾)
4443sselda 3944 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℚ) → 𝑟𝐾)
4544adantr 481 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟𝐾)
4617ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐵𝑉)
47 nmoleub2.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑆)
48 nmoleub2.w . . . . . . . . . . . . 13 𝐾 = (Base‘𝐺)
49 nmoleub2lem3.p . . . . . . . . . . . . 13 · = ( ·𝑠𝑆)
50 eqid 2736 . . . . . . . . . . . . 13 ( ·𝑠𝑇) = ( ·𝑠𝑇)
5147, 48, 13, 49, 50lmhmlin 20496 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑟𝐾𝐵𝑉) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5242, 45, 46, 51syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5352fveq2d 6846 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))))
549ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑇 ∈ NrmMod)
55 eqid 2736 . . . . . . . . . . . . . . . 16 (Scalar‘𝑇) = (Scalar‘𝑇)
5647, 55lmhmsca 20491 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺)
5742, 56syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Scalar‘𝑇) = 𝐺)
5857fveq2d 6846 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺))
5958, 48eqtr4di 2794 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = 𝐾)
6045, 59eleqtrrd 2841 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ (Base‘(Scalar‘𝑇)))
6118ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹𝐵) ∈ (Base‘𝑇))
62 eqid 2736 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
63 eqid 2736 . . . . . . . . . . . 12 (norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇))
6414, 19, 50, 55, 62, 63nmvs 24040 . . . . . . . . . . 11 ((𝑇 ∈ NrmMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6554, 60, 61, 64syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6657fveq2d 6846 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺))
6766fveq1d 6844 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = ((norm‘𝐺)‘𝑟))
6823elin2d 4159 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ ℂMod)
6968ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ ℂMod)
7047, 48clmabs 24446 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
7169, 45, 70syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
72 0red 11158 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ∈ ℝ)
735rpge0d 12961 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑅)
744, 6, 31, 73mulge0d 11732 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐴 · 𝑅))
75 divge0 12024 . . . . . . . . . . . . . . . . . 18 ((((𝐴 · 𝑅) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝑅)) ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
767, 74, 21, 38, 75syl22anc 837 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7776ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7872, 41, 3, 77, 1lelttrd 11313 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 < 𝑟)
7972, 3, 78ltled 11303 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ 𝑟)
803, 79absidd 15307 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = 𝑟)
8171, 80eqtr3d 2778 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘𝐺)‘𝑟) = 𝑟)
8267, 81eqtrd 2776 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = 𝑟)
8382oveq1d 7372 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8453, 65, 833eqtrd 2780 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8584oveq1d 7372 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) = ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅))
8613, 47, 49, 48clmvscl 24451 . . . . . . . . . 10 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾𝐵𝑉) → (𝑟 · 𝐵) ∈ 𝑉)
8769, 45, 46, 86syl3anc 1371 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · 𝐵) ∈ 𝑉)
8824ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ NrmMod)
89 eqid 2736 . . . . . . . . . . . . 13 (norm‘𝐺) = (norm‘𝐺)
9013, 27, 49, 47, 48, 89nmvs 24040 . . . . . . . . . . . 12 ((𝑆 ∈ NrmMod ∧ 𝑟𝐾𝐵𝑉) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9188, 45, 46, 90syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9281oveq1d 7372 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘𝐺)‘𝑟) · (𝐿𝐵)) = (𝑟 · (𝐿𝐵)))
9391, 92eqtrd 2776 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (𝑟 · (𝐿𝐵)))
94 simprr 771 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 < (𝑅 / (𝐿𝐵)))
956ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ)
96 nmoleub2lem3.4 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ (0g𝑆))
97 eqid 2736 . . . . . . . . . . . . . . . 16 (0g𝑆) = (0g𝑆)
9813, 27, 97nmrpcl 23976 . . . . . . . . . . . . . . 15 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉𝐵 ≠ (0g𝑆)) → (𝐿𝐵) ∈ ℝ+)
9926, 17, 96, 98syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑 → (𝐿𝐵) ∈ ℝ+)
10099rpregt0d 12963 . . . . . . . . . . . . 13 (𝜑 → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
101100ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
102 ltmuldiv 12028 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
1033, 95, 101, 102syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
10494, 103mpbird 256 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝐿𝐵)) < 𝑅)
10593, 104eqbrtrd 5127 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) < 𝑅)
106 nmoleub2lem3.5 . . . . . . . . . 10 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
107106ad2antrr 724 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
10887, 105, 107mp2d 49 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)
10985, 108eqbrtrrd 5129 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴)
11021ad2antrr 724 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
1113, 110remulcld 11185 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ∈ ℝ)
1124ad2antrr 724 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐴 ∈ ℝ)
1135ad2antrr 724 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ+)
114111, 112, 113ledivmul2d 13011 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴 ↔ (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅)))
115109, 114mpbid 231 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅))
116112, 95remulcld 11185 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐴 · 𝑅) ∈ ℝ)
11721, 38jca 512 . . . . . . . 8 (𝜑 → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
118117ad2antrr 724 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
119 lemuldiv 12035 . . . . . . 7 ((𝑟 ∈ ℝ ∧ (𝐴 · 𝑅) ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
1203, 116, 118, 119syl3anc 1371 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
121115, 120mpbid 231 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
1223, 41, 121lensymd 11306 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ¬ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
1231, 122pm2.21dd 194 . . 3 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
1246, 99rerpdivcld 12988 . . . 4 (𝜑 → (𝑅 / (𝐿𝐵)) ∈ ℝ)
1254recnd 11183 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1266recnd 11183 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
12729recnd 11183 . . . . . . 7 (𝜑 → (𝐿𝐵) ∈ ℂ)
128 mulass 11139 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝐴 · (𝑅 · (𝐿𝐵))))
129 mul12 11320 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → (𝐴 · (𝑅 · (𝐿𝐵))) = (𝑅 · (𝐴 · (𝐿𝐵))))
130128, 129eqtrd 2776 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
131125, 126, 127, 130syl3anc 1371 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
13230, 21, 5, 37ltmul2dd 13013 . . . . . 6 (𝜑 → (𝑅 · (𝐴 · (𝐿𝐵))) < (𝑅 · (𝑀‘(𝐹𝐵))))
133131, 132eqbrtrd 5127 . . . . 5 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))))
134 lt2mul2div 12033 . . . . . 6 ((((𝐴 · 𝑅) ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) ∧ (𝑅 ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))) → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
1357, 100, 6, 117, 134syl22anc 837 . . . . 5 (𝜑 → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
136133, 135mpbid 231 . . . 4 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵)))
137 qbtwnre 13118 . . . 4 ((((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ ∧ (𝑅 / (𝐿𝐵)) ∈ ℝ ∧ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))) → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
13840, 124, 136, 137syl3anc 1371 . . 3 (𝜑 → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
139123, 138r19.29a 3159 . 2 (𝜑 → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
140139, 35pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cin 3909  wss 3910   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   · cmul 11056  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  cq 12873  +crp 12915  abscabs 15119  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321   LMHom clmhm 20480  normcnm 23932  NrmGrpcngp 23933  NrmModcnlm 23936   normOp cnmo 24069  ℂModcclm 24425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-topgen 17325  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-subg 18925  df-ghm 19006  df-cmn 19564  df-mgp 19897  df-ring 19966  df-cring 19967  df-subrg 20220  df-lmod 20324  df-lmhm 20483  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-nlm 23942  df-clm 24426
This theorem is referenced by:  nmoleub2lem2  24479
  Copyright terms: Public domain W3C validator