MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem3 Structured version   Visualization version   GIF version

Theorem nmoleub2lem3 25042
Description: Lemma for nmoleub2a 25044 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem3.p · = ( ·𝑠𝑆)
nmoleub2lem3.1 (𝜑𝐴 ∈ ℝ)
nmoleub2lem3.2 (𝜑 → 0 ≤ 𝐴)
nmoleub2lem3.3 (𝜑𝐵𝑉)
nmoleub2lem3.4 (𝜑𝐵 ≠ (0g𝑆))
nmoleub2lem3.5 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
nmoleub2lem3.6 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
Assertion
Ref Expression
nmoleub2lem3 ¬ 𝜑
Distinct variable groups:   𝐴,𝑟   𝐹,𝑟   𝐿,𝑟   𝑀,𝑟   𝜑,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hints:   𝑆(𝑟)   𝑇(𝑟)   · (𝑟)   𝐺(𝑟)   𝐾(𝑟)   𝑁(𝑟)   𝑉(𝑟)

Proof of Theorem nmoleub2lem3
StepHypRef Expression
1 simprl 770 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
2 qre 12851 . . . . . 6 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
32ad2antlr 727 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ ℝ)
4 nmoleub2lem3.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
65rpred 12934 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
74, 6remulcld 11142 . . . . . . 7 (𝜑 → (𝐴 · 𝑅) ∈ ℝ)
8 nmoleub2.t . . . . . . . . . . 11 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
98elin1d 4151 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmMod)
10 nlmngp 24592 . . . . . . . . . 10 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
12 nmoleub2.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
13 nmoleub2.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
14 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
1513, 14lmhmf 20968 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
1612, 15syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
17 nmoleub2lem3.3 . . . . . . . . . 10 (𝜑𝐵𝑉)
1816, 17ffvelcdmd 7018 . . . . . . . . 9 (𝜑 → (𝐹𝐵) ∈ (Base‘𝑇))
19 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
2014, 19nmcl 24531 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
2111, 18, 20syl2anc 584 . . . . . . . 8 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ)
22 0red 11115 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
23 nmoleub2.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 4151 . . . . . . . . . . . 12 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 24592 . . . . . . . . . . . 12 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ NrmGrp)
27 nmoleub2.l . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
2813, 27nmcl 24531 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → (𝐿𝐵) ∈ ℝ)
2926, 17, 28syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐿𝐵) ∈ ℝ)
304, 29remulcld 11142 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) ∈ ℝ)
31 nmoleub2lem3.2 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3213, 27nmge0 24532 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝐿𝐵))
3326, 17, 32syl2anc 584 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝐿𝐵))
344, 29, 31, 33mulge0d 11694 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐴 · (𝐿𝐵)))
35 nmoleub2lem3.6 . . . . . . . . . 10 (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
3630, 21ltnled 11260 . . . . . . . . . 10 (𝜑 → ((𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)) ↔ ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵))))
3735, 36mpbird 257 . . . . . . . . 9 (𝜑 → (𝐴 · (𝐿𝐵)) < (𝑀‘(𝐹𝐵)))
3822, 30, 21, 34, 37lelttrd 11271 . . . . . . . 8 (𝜑 → 0 < (𝑀‘(𝐹𝐵)))
3921, 38elrpd 12931 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝐵)) ∈ ℝ+)
407, 39rerpdivcld 12965 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4140ad2antrr 726 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ)
4212ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
43 nmoleub2a.5 . . . . . . . . . . . . . 14 (𝜑 → ℚ ⊆ 𝐾)
4443sselda 3929 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℚ) → 𝑟𝐾)
4544adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟𝐾)
4617ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐵𝑉)
47 nmoleub2.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑆)
48 nmoleub2.w . . . . . . . . . . . . 13 𝐾 = (Base‘𝐺)
49 nmoleub2lem3.p . . . . . . . . . . . . 13 · = ( ·𝑠𝑆)
50 eqid 2731 . . . . . . . . . . . . 13 ( ·𝑠𝑇) = ( ·𝑠𝑇)
5147, 48, 13, 49, 50lmhmlin 20969 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑟𝐾𝐵𝑉) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5242, 45, 46, 51syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹‘(𝑟 · 𝐵)) = (𝑟( ·𝑠𝑇)(𝐹𝐵)))
5352fveq2d 6826 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))))
549ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑇 ∈ NrmMod)
55 eqid 2731 . . . . . . . . . . . . . . . 16 (Scalar‘𝑇) = (Scalar‘𝑇)
5647, 55lmhmsca 20964 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺)
5742, 56syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Scalar‘𝑇) = 𝐺)
5857fveq2d 6826 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺))
5958, 48eqtr4di 2784 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (Base‘(Scalar‘𝑇)) = 𝐾)
6045, 59eleqtrrd 2834 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ∈ (Base‘(Scalar‘𝑇)))
6118ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐹𝐵) ∈ (Base‘𝑇))
62 eqid 2731 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
63 eqid 2731 . . . . . . . . . . . 12 (norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇))
6414, 19, 50, 55, 62, 63nmvs 24591 . . . . . . . . . . 11 ((𝑇 ∈ NrmMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6554, 60, 61, 64syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝑟( ·𝑠𝑇)(𝐹𝐵))) = (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))))
6657fveq2d 6826 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺))
6766fveq1d 6824 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = ((norm‘𝐺)‘𝑟))
6823elin2d 4152 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ ℂMod)
6968ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ ℂMod)
7047, 48clmabs 25010 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
7169, 45, 70syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = ((norm‘𝐺)‘𝑟))
72 0red 11115 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ∈ ℝ)
735rpge0d 12938 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑅)
744, 6, 31, 73mulge0d 11694 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐴 · 𝑅))
75 divge0 11991 . . . . . . . . . . . . . . . . . 18 ((((𝐴 · 𝑅) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝑅)) ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
767, 74, 21, 38, 75syl22anc 838 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7776ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
7872, 41, 3, 77, 1lelttrd 11271 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 < 𝑟)
7972, 3, 78ltled 11261 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 0 ≤ 𝑟)
803, 79absidd 15330 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (abs‘𝑟) = 𝑟)
8171, 80eqtr3d 2768 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘𝐺)‘𝑟) = 𝑟)
8267, 81eqtrd 2766 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((norm‘(Scalar‘𝑇))‘𝑟) = 𝑟)
8382oveq1d 7361 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘(Scalar‘𝑇))‘𝑟) · (𝑀‘(𝐹𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8453, 65, 833eqtrd 2770 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹‘(𝑟 · 𝐵))) = (𝑟 · (𝑀‘(𝐹𝐵))))
8584oveq1d 7361 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) = ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅))
8613, 47, 49, 48clmvscl 25015 . . . . . . . . . 10 ((𝑆 ∈ ℂMod ∧ 𝑟𝐾𝐵𝑉) → (𝑟 · 𝐵) ∈ 𝑉)
8769, 45, 46, 86syl3anc 1373 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · 𝐵) ∈ 𝑉)
8824ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑆 ∈ NrmMod)
89 eqid 2731 . . . . . . . . . . . . 13 (norm‘𝐺) = (norm‘𝐺)
9013, 27, 49, 47, 48, 89nmvs 24591 . . . . . . . . . . . 12 ((𝑆 ∈ NrmMod ∧ 𝑟𝐾𝐵𝑉) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9188, 45, 46, 90syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (((norm‘𝐺)‘𝑟) · (𝐿𝐵)))
9281oveq1d 7361 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((norm‘𝐺)‘𝑟) · (𝐿𝐵)) = (𝑟 · (𝐿𝐵)))
9391, 92eqtrd 2766 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) = (𝑟 · (𝐿𝐵)))
94 simprr 772 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 < (𝑅 / (𝐿𝐵)))
956ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ)
96 nmoleub2lem3.4 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ (0g𝑆))
97 eqid 2731 . . . . . . . . . . . . . . . 16 (0g𝑆) = (0g𝑆)
9813, 27, 97nmrpcl 24535 . . . . . . . . . . . . . . 15 ((𝑆 ∈ NrmGrp ∧ 𝐵𝑉𝐵 ≠ (0g𝑆)) → (𝐿𝐵) ∈ ℝ+)
9926, 17, 96, 98syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝐿𝐵) ∈ ℝ+)
10099rpregt0d 12940 . . . . . . . . . . . . 13 (𝜑 → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
101100ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵)))
102 ltmuldiv 11995 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
1033, 95, 101, 102syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝐿𝐵)) < 𝑅𝑟 < (𝑅 / (𝐿𝐵))))
10494, 103mpbird 257 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝐿𝐵)) < 𝑅)
10593, 104eqbrtrd 5111 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐿‘(𝑟 · 𝐵)) < 𝑅)
106 nmoleub2lem3.5 . . . . . . . . . 10 (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
107106ad2antrr 726 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))
10887, 105, 107mp2d 49 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)
10985, 108eqbrtrrd 5113 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴)
11021ad2antrr 726 . . . . . . . . 9 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ∈ ℝ)
1113, 110remulcld 11142 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ∈ ℝ)
1124ad2antrr 726 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝐴 ∈ ℝ)
1135ad2antrr 726 . . . . . . . 8 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑅 ∈ ℝ+)
114111, 112, 113ledivmul2d 12988 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (((𝑟 · (𝑀‘(𝐹𝐵))) / 𝑅) ≤ 𝐴 ↔ (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅)))
115109, 114mpbid 232 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅))
116112, 95remulcld 11142 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝐴 · 𝑅) ∈ ℝ)
11721, 38jca 511 . . . . . . . 8 (𝜑 → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
118117ad2antrr 726 . . . . . . 7 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))
119 lemuldiv 12002 . . . . . . 7 ((𝑟 ∈ ℝ ∧ (𝐴 · 𝑅) ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
1203, 116, 118, 119syl3anc 1373 . . . . . 6 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ((𝑟 · (𝑀‘(𝐹𝐵))) ≤ (𝐴 · 𝑅) ↔ 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵)))))
121115, 120mpbid 232 . . . . 5 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → 𝑟 ≤ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))))
1223, 41, 121lensymd 11264 . . . 4 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → ¬ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟)
1231, 122pm2.21dd 195 . . 3 (((𝜑𝑟 ∈ ℚ) ∧ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵)))) → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
1246, 99rerpdivcld 12965 . . . 4 (𝜑 → (𝑅 / (𝐿𝐵)) ∈ ℝ)
1254recnd 11140 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1266recnd 11140 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
12729recnd 11140 . . . . . . 7 (𝜑 → (𝐿𝐵) ∈ ℂ)
128 mulass 11094 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝐴 · (𝑅 · (𝐿𝐵))))
129 mul12 11278 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → (𝐴 · (𝑅 · (𝐿𝐵))) = (𝑅 · (𝐴 · (𝐿𝐵))))
130128, 129eqtrd 2766 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐿𝐵) ∈ ℂ) → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
131125, 126, 127, 130syl3anc 1373 . . . . . 6 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) = (𝑅 · (𝐴 · (𝐿𝐵))))
13230, 21, 5, 37ltmul2dd 12990 . . . . . 6 (𝜑 → (𝑅 · (𝐴 · (𝐿𝐵))) < (𝑅 · (𝑀‘(𝐹𝐵))))
133131, 132eqbrtrd 5111 . . . . 5 (𝜑 → ((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))))
134 lt2mul2div 12000 . . . . . 6 ((((𝐴 · 𝑅) ∈ ℝ ∧ ((𝐿𝐵) ∈ ℝ ∧ 0 < (𝐿𝐵))) ∧ (𝑅 ∈ ℝ ∧ ((𝑀‘(𝐹𝐵)) ∈ ℝ ∧ 0 < (𝑀‘(𝐹𝐵))))) → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
1357, 100, 6, 117, 134syl22anc 838 . . . . 5 (𝜑 → (((𝐴 · 𝑅) · (𝐿𝐵)) < (𝑅 · (𝑀‘(𝐹𝐵))) ↔ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))))
136133, 135mpbid 232 . . . 4 (𝜑 → ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵)))
137 qbtwnre 13098 . . . 4 ((((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) ∈ ℝ ∧ (𝑅 / (𝐿𝐵)) ∈ ℝ ∧ ((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < (𝑅 / (𝐿𝐵))) → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
13840, 124, 136, 137syl3anc 1373 . . 3 (𝜑 → ∃𝑟 ∈ ℚ (((𝐴 · 𝑅) / (𝑀‘(𝐹𝐵))) < 𝑟𝑟 < (𝑅 / (𝐿𝐵))))
139123, 138r19.29a 3140 . 2 (𝜑 → (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))
140139, 35pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cin 3896  wss 3897   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   · cmul 11011  *cxr 11145   < clt 11146  cle 11147   / cdiv 11774  cq 12846  +crp 12890  abscabs 15141  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   LMHom clmhm 20953  normcnm 24491  NrmGrpcngp 24492  NrmModcnlm 24495   normOp cnmo 24620  ℂModcclm 24989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-topgen 17347  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-subg 19036  df-ghm 19125  df-cmn 19694  df-mgp 20059  df-ring 20153  df-cring 20154  df-subrg 20485  df-lmod 20795  df-lmhm 20956  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-xms 24235  df-ms 24236  df-nm 24497  df-ngp 24498  df-nlm 24501  df-clm 24990
This theorem is referenced by:  nmoleub2lem2  25043
  Copyright terms: Public domain W3C validator