Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product. Analogue of lmodvsass 19728. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clmvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
clmvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
clmvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
clmvsass | ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 · 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmvscl.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | clmmul 23777 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) |
3 | 2 | adantr 485 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → · = (.r‘𝐹)) |
4 | 3 | oveqd 7168 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑄 · 𝑅) = (𝑄(.r‘𝐹)𝑅)) |
5 | 4 | oveq1d 7166 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 · 𝑅) · 𝑋) = ((𝑄(.r‘𝐹)𝑅) · 𝑋)) |
6 | clmlmod 23769 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
7 | clmvscl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
8 | clmvscl.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | clmvscl.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
10 | eqid 2759 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
11 | 7, 1, 8, 9, 10 | lmodvsass 19728 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄(.r‘𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
12 | 6, 11 | sylan 584 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄(.r‘𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
13 | 5, 12 | eqtrd 2794 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 · 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ‘cfv 6336 (class class class)co 7151 · cmul 10581 Basecbs 16542 .rcmulr 16625 Scalarcsca 16627 ·𝑠 cvsca 16628 LModclmod 19703 ℂModcclm 23764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-mulf 10656 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-z 12022 df-dec 12139 df-uz 12284 df-fz 12941 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-starv 16639 df-tset 16643 df-ple 16644 df-ds 16646 df-unif 16647 df-lmod 19705 df-cnfld 20168 df-clm 23765 |
This theorem is referenced by: clmvscom 23792 clmnegneg 23806 cvsmuleqdivd 23836 cvsdiveqd 23837 ncvspi 23858 cnncvsmulassdemo 23866 minveclem2 24127 ttgcontlem1 26779 |
Copyright terms: Public domain | W3C validator |