![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmhmclm | Structured version Visualization version GIF version |
Description: The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015.) |
Ref | Expression |
---|---|
lmhmclm | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlmod1 20788 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | |
2 | lmhmlmod2 20787 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | |
3 | 1, 2 | 2thd 264 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod)) |
4 | eqid 2732 | . . . . . 6 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
5 | eqid 2732 | . . . . . 6 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
6 | 4, 5 | lmhmsca 20785 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
7 | 6 | eqcomd 2738 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇)) |
8 | 7 | fveq2d 6895 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑇))) |
9 | 8 | oveq2d 7427 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (ℂfld ↾s (Base‘(Scalar‘𝑆))) = (ℂfld ↾s (Base‘(Scalar‘𝑇)))) |
10 | 7, 9 | eqeq12d 2748 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) = (ℂfld ↾s (Base‘(Scalar‘𝑆))) ↔ (Scalar‘𝑇) = (ℂfld ↾s (Base‘(Scalar‘𝑇))))) |
11 | 8 | eleq1d 2818 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld) ↔ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld))) |
12 | 3, 10, 11 | 3anbi123d 1436 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) = (ℂfld ↾s (Base‘(Scalar‘𝑆))) ∧ (Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld)) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) = (ℂfld ↾s (Base‘(Scalar‘𝑇))) ∧ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld)))) |
13 | eqid 2732 | . . 3 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
14 | 4, 13 | isclm 24804 | . 2 ⊢ (𝑆 ∈ ℂMod ↔ (𝑆 ∈ LMod ∧ (Scalar‘𝑆) = (ℂfld ↾s (Base‘(Scalar‘𝑆))) ∧ (Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld))) |
15 | eqid 2732 | . . 3 ⊢ (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) | |
16 | 5, 15 | isclm 24804 | . 2 ⊢ (𝑇 ∈ ℂMod ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) = (ℂfld ↾s (Base‘(Scalar‘𝑇))) ∧ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld))) |
17 | 12, 14, 16 | 3bitr4g 313 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7411 Basecbs 17148 ↾s cress 17177 Scalarcsca 17204 SubRingcsubrg 20457 LModclmod 20614 LMHom clmhm 20774 ℂfldccnfld 21144 ℂModcclm 24802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-lmhm 20777 df-clm 24803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |