MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmclm Structured version   Visualization version   GIF version

Theorem lmhmclm 24827
Description: The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015.)
Assertion
Ref Expression
lmhmclm (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod))

Proof of Theorem lmhmclm
StepHypRef Expression
1 lmhmlmod1 20788 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
2 lmhmlmod2 20787 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
31, 22thd 264 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod))
4 eqid 2732 . . . . . 6 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2732 . . . . . 6 (Scalar‘𝑇) = (Scalar‘𝑇)
64, 5lmhmsca 20785 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
76eqcomd 2738 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇))
87fveq2d 6895 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑇)))
98oveq2d 7427 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (ℂflds (Base‘(Scalar‘𝑆))) = (ℂflds (Base‘(Scalar‘𝑇))))
107, 9eqeq12d 2748 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) = (ℂflds (Base‘(Scalar‘𝑆))) ↔ (Scalar‘𝑇) = (ℂflds (Base‘(Scalar‘𝑇)))))
118eleq1d 2818 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld) ↔ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld)))
123, 10, 113anbi123d 1436 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) = (ℂflds (Base‘(Scalar‘𝑆))) ∧ (Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld)) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) = (ℂflds (Base‘(Scalar‘𝑇))) ∧ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld))))
13 eqid 2732 . . 3 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
144, 13isclm 24804 . 2 (𝑆 ∈ ℂMod ↔ (𝑆 ∈ LMod ∧ (Scalar‘𝑆) = (ℂflds (Base‘(Scalar‘𝑆))) ∧ (Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld)))
15 eqid 2732 . . 3 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
165, 15isclm 24804 . 2 (𝑇 ∈ ℂMod ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) = (ℂflds (Base‘(Scalar‘𝑇))) ∧ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld)))
1712, 14, 163bitr4g 313 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  cfv 6543  (class class class)co 7411  Basecbs 17148  s cress 17177  Scalarcsca 17204  SubRingcsubrg 20457  LModclmod 20614   LMHom clmhm 20774  fldccnfld 21144  ℂModcclm 24802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-lmhm 20777  df-clm 24803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator