Proof of Theorem lmhmclm
Step | Hyp | Ref
| Expression |
1 | | lmhmlmod1 20210 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
2 | | lmhmlmod2 20209 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
3 | 1, 2 | 2thd 264 |
. . 3
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod)) |
4 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
6 | 4, 5 | lmhmsca 20207 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
7 | 6 | eqcomd 2744 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇)) |
8 | 7 | fveq2d 6760 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑆)) =
(Base‘(Scalar‘𝑇))) |
9 | 8 | oveq2d 7271 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (ℂfld
↾s (Base‘(Scalar‘𝑆))) = (ℂfld
↾s (Base‘(Scalar‘𝑇)))) |
10 | 7, 9 | eqeq12d 2754 |
. . 3
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) = (ℂfld
↾s (Base‘(Scalar‘𝑆))) ↔ (Scalar‘𝑇) = (ℂfld
↾s (Base‘(Scalar‘𝑇))))) |
11 | 8 | eleq1d 2823 |
. . 3
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑆)) ∈
(SubRing‘ℂfld) ↔ (Base‘(Scalar‘𝑇)) ∈
(SubRing‘ℂfld))) |
12 | 3, 10, 11 | 3anbi123d 1434 |
. 2
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) = (ℂfld
↾s (Base‘(Scalar‘𝑆))) ∧ (Base‘(Scalar‘𝑆)) ∈
(SubRing‘ℂfld)) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) = (ℂfld
↾s (Base‘(Scalar‘𝑇))) ∧ (Base‘(Scalar‘𝑇)) ∈
(SubRing‘ℂfld)))) |
13 | | eqid 2738 |
. . 3
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
14 | 4, 13 | isclm 24133 |
. 2
⊢ (𝑆 ∈ ℂMod ↔ (𝑆 ∈ LMod ∧
(Scalar‘𝑆) =
(ℂfld ↾s (Base‘(Scalar‘𝑆))) ∧
(Base‘(Scalar‘𝑆)) ∈
(SubRing‘ℂfld))) |
15 | | eqid 2738 |
. . 3
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
16 | 5, 15 | isclm 24133 |
. 2
⊢ (𝑇 ∈ ℂMod ↔ (𝑇 ∈ LMod ∧
(Scalar‘𝑇) =
(ℂfld ↾s (Base‘(Scalar‘𝑇))) ∧
(Base‘(Scalar‘𝑇)) ∈
(SubRing‘ℂfld))) |
17 | 12, 14, 16 | 3bitr4g 313 |
1
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod)) |