MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmclm Structured version   Visualization version   GIF version

Theorem lmhmclm 25139
Description: The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015.)
Assertion
Ref Expression
lmhmclm (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod))

Proof of Theorem lmhmclm
StepHypRef Expression
1 lmhmlmod1 21055 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
2 lmhmlmod2 21054 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
31, 22thd 265 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod))
4 eqid 2740 . . . . . 6 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2740 . . . . . 6 (Scalar‘𝑇) = (Scalar‘𝑇)
64, 5lmhmsca 21052 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
76eqcomd 2746 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇))
87fveq2d 6924 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑇)))
98oveq2d 7464 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (ℂflds (Base‘(Scalar‘𝑆))) = (ℂflds (Base‘(Scalar‘𝑇))))
107, 9eqeq12d 2756 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) = (ℂflds (Base‘(Scalar‘𝑆))) ↔ (Scalar‘𝑇) = (ℂflds (Base‘(Scalar‘𝑇)))))
118eleq1d 2829 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld) ↔ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld)))
123, 10, 113anbi123d 1436 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) = (ℂflds (Base‘(Scalar‘𝑆))) ∧ (Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld)) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) = (ℂflds (Base‘(Scalar‘𝑇))) ∧ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld))))
13 eqid 2740 . . 3 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
144, 13isclm 25116 . 2 (𝑆 ∈ ℂMod ↔ (𝑆 ∈ LMod ∧ (Scalar‘𝑆) = (ℂflds (Base‘(Scalar‘𝑆))) ∧ (Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld)))
15 eqid 2740 . . 3 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
165, 15isclm 25116 . 2 (𝑇 ∈ ℂMod ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) = (ℂflds (Base‘(Scalar‘𝑇))) ∧ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld)))
1712, 14, 163bitr4g 314 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  Scalarcsca 17314  SubRingcsubrg 20595  LModclmod 20880   LMHom clmhm 21041  fldccnfld 21387  ℂModcclm 25114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-lmhm 21044  df-clm 25115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator