MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmclm Structured version   Visualization version   GIF version

Theorem lmhmclm 24248
Description: The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015.)
Assertion
Ref Expression
lmhmclm (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod))

Proof of Theorem lmhmclm
StepHypRef Expression
1 lmhmlmod1 20293 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
2 lmhmlmod2 20292 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
31, 22thd 264 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod))
4 eqid 2740 . . . . . 6 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2740 . . . . . 6 (Scalar‘𝑇) = (Scalar‘𝑇)
64, 5lmhmsca 20290 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
76eqcomd 2746 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇))
87fveq2d 6775 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑇)))
98oveq2d 7287 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (ℂflds (Base‘(Scalar‘𝑆))) = (ℂflds (Base‘(Scalar‘𝑇))))
107, 9eqeq12d 2756 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) = (ℂflds (Base‘(Scalar‘𝑆))) ↔ (Scalar‘𝑇) = (ℂflds (Base‘(Scalar‘𝑇)))))
118eleq1d 2825 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld) ↔ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld)))
123, 10, 113anbi123d 1435 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) = (ℂflds (Base‘(Scalar‘𝑆))) ∧ (Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld)) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) = (ℂflds (Base‘(Scalar‘𝑇))) ∧ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld))))
13 eqid 2740 . . 3 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
144, 13isclm 24225 . 2 (𝑆 ∈ ℂMod ↔ (𝑆 ∈ LMod ∧ (Scalar‘𝑆) = (ℂflds (Base‘(Scalar‘𝑆))) ∧ (Base‘(Scalar‘𝑆)) ∈ (SubRing‘ℂfld)))
15 eqid 2740 . . 3 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
165, 15isclm 24225 . 2 (𝑇 ∈ ℂMod ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) = (ℂflds (Base‘(Scalar‘𝑇))) ∧ (Base‘(Scalar‘𝑇)) ∈ (SubRing‘ℂfld)))
1712, 14, 163bitr4g 314 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1542  wcel 2110  cfv 6432  (class class class)co 7271  Basecbs 16910  s cress 16939  Scalarcsca 16963  SubRingcsubrg 20018  LModclmod 20121   LMHom clmhm 20279  fldccnfld 20595  ℂModcclm 24223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-lmhm 20282  df-clm 24224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator