| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmpm1dir | Structured version Visualization version GIF version | ||
| Description: Subtractive distributive law for the scalar product of a subcomplex module. (Contributed by NM, 31-Jul-2007.) (Revised by AV, 21-Sep-2021.) |
| Ref | Expression |
|---|---|
| clmpm1dir.v | ⊢ 𝑉 = (Base‘𝑊) |
| clmpm1dir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| clmpm1dir.a | ⊢ + = (+g‘𝑊) |
| clmpm1dir.k | ⊢ 𝐾 = (Base‘(Scalar‘𝑊)) |
| Ref | Expression |
|---|---|
| clmpm1dir | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | clmpm1dir.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 3 | eqid 2736 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | clmpm1dir.k | . . 3 ⊢ 𝐾 = (Base‘(Scalar‘𝑊)) | |
| 5 | eqid 2736 | . . 3 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 6 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ ℂMod) | |
| 7 | simpr1 1195 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝐾) | |
| 8 | simpr2 1196 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝐾) | |
| 9 | simpr3 1197 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | clmsubdir 25058 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶)(-g‘𝑊)(𝐵 · 𝐶))) |
| 11 | 1, 3, 2, 4 | clmvscl 25044 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉) → (𝐴 · 𝐶) ∈ 𝑉) |
| 12 | 6, 7, 9, 11 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → (𝐴 · 𝐶) ∈ 𝑉) |
| 13 | 1, 3, 2, 4 | clmvscl 25044 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉) → (𝐵 · 𝐶) ∈ 𝑉) |
| 14 | 6, 8, 9, 13 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → (𝐵 · 𝐶) ∈ 𝑉) |
| 15 | clmpm1dir.a | . . . 4 ⊢ + = (+g‘𝑊) | |
| 16 | eqid 2736 | . . . 4 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
| 17 | 1, 15, 16, 5 | grpsubval 18973 | . . 3 ⊢ (((𝐴 · 𝐶) ∈ 𝑉 ∧ (𝐵 · 𝐶) ∈ 𝑉) → ((𝐴 · 𝐶)(-g‘𝑊)(𝐵 · 𝐶)) = ((𝐴 · 𝐶) + ((invg‘𝑊)‘(𝐵 · 𝐶)))) |
| 18 | 12, 14, 17 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐶)(-g‘𝑊)(𝐵 · 𝐶)) = ((𝐴 · 𝐶) + ((invg‘𝑊)‘(𝐵 · 𝐶)))) |
| 19 | 1, 16, 3, 2 | clmvneg1 25055 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐵 · 𝐶) ∈ 𝑉) → (-1 · (𝐵 · 𝐶)) = ((invg‘𝑊)‘(𝐵 · 𝐶))) |
| 20 | 19 | eqcomd 2742 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐵 · 𝐶) ∈ 𝑉) → ((invg‘𝑊)‘(𝐵 · 𝐶)) = (-1 · (𝐵 · 𝐶))) |
| 21 | 6, 14, 20 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((invg‘𝑊)‘(𝐵 · 𝐶)) = (-1 · (𝐵 · 𝐶))) |
| 22 | 21 | oveq2d 7426 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐶) + ((invg‘𝑊)‘(𝐵 · 𝐶))) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶)))) |
| 23 | 10, 18, 22 | 3eqtrd 2775 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 1c1 11135 − cmin 11471 -cneg 11472 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 ·𝑠 cvsca 17280 invgcminusg 18922 -gcsg 18923 ℂModcclm 25018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-seq 14025 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-subrg 20535 df-lmod 20824 df-cnfld 21321 df-clm 25019 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |