Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmpm1dir | Structured version Visualization version GIF version |
Description: Subtractive distributive law for the scalar product of a subcomplex module. (Contributed by NM, 31-Jul-2007.) (Revised by AV, 21-Sep-2021.) |
Ref | Expression |
---|---|
clmpm1dir.v | ⊢ 𝑉 = (Base‘𝑊) |
clmpm1dir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmpm1dir.a | ⊢ + = (+g‘𝑊) |
clmpm1dir.k | ⊢ 𝐾 = (Base‘(Scalar‘𝑊)) |
Ref | Expression |
---|---|
clmpm1dir | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmpm1dir.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | clmpm1dir.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
3 | eqid 2758 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | clmpm1dir.k | . . 3 ⊢ 𝐾 = (Base‘(Scalar‘𝑊)) | |
5 | eqid 2758 | . . 3 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
6 | simpl 486 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ ℂMod) | |
7 | simpr1 1191 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝐾) | |
8 | simpr2 1192 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝐾) | |
9 | simpr3 1193 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | clmsubdir 23817 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶)(-g‘𝑊)(𝐵 · 𝐶))) |
11 | 1, 3, 2, 4 | clmvscl 23803 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉) → (𝐴 · 𝐶) ∈ 𝑉) |
12 | 6, 7, 9, 11 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → (𝐴 · 𝐶) ∈ 𝑉) |
13 | 1, 3, 2, 4 | clmvscl 23803 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉) → (𝐵 · 𝐶) ∈ 𝑉) |
14 | 6, 8, 9, 13 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → (𝐵 · 𝐶) ∈ 𝑉) |
15 | clmpm1dir.a | . . . 4 ⊢ + = (+g‘𝑊) | |
16 | eqid 2758 | . . . 4 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
17 | 1, 15, 16, 5 | grpsubval 18230 | . . 3 ⊢ (((𝐴 · 𝐶) ∈ 𝑉 ∧ (𝐵 · 𝐶) ∈ 𝑉) → ((𝐴 · 𝐶)(-g‘𝑊)(𝐵 · 𝐶)) = ((𝐴 · 𝐶) + ((invg‘𝑊)‘(𝐵 · 𝐶)))) |
18 | 12, 14, 17 | syl2anc 587 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐶)(-g‘𝑊)(𝐵 · 𝐶)) = ((𝐴 · 𝐶) + ((invg‘𝑊)‘(𝐵 · 𝐶)))) |
19 | 1, 16, 3, 2 | clmvneg1 23814 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐵 · 𝐶) ∈ 𝑉) → (-1 · (𝐵 · 𝐶)) = ((invg‘𝑊)‘(𝐵 · 𝐶))) |
20 | 19 | eqcomd 2764 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐵 · 𝐶) ∈ 𝑉) → ((invg‘𝑊)‘(𝐵 · 𝐶)) = (-1 · (𝐵 · 𝐶))) |
21 | 6, 14, 20 | syl2anc 587 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((invg‘𝑊)‘(𝐵 · 𝐶)) = (-1 · (𝐵 · 𝐶))) |
22 | 21 | oveq2d 7172 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐶) + ((invg‘𝑊)‘(𝐵 · 𝐶))) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶)))) |
23 | 10, 18, 22 | 3eqtrd 2797 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 (class class class)co 7156 1c1 10589 − cmin 10921 -cneg 10922 Basecbs 16555 +gcplusg 16637 Scalarcsca 16640 ·𝑠 cvsca 16641 invgcminusg 18184 -gcsg 18185 ℂModcclm 23777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-seq 13432 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-starv 16652 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-0g 16787 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-grp 18186 df-minusg 18187 df-sbg 18188 df-mulg 18306 df-subg 18357 df-cmn 18989 df-mgp 19322 df-ur 19334 df-ring 19381 df-cring 19382 df-subrg 19615 df-lmod 19718 df-cnfld 20181 df-clm 23778 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |