![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmvsubval2 | Structured version Visualization version GIF version |
Description: Value of vector subtraction on a subcomplex module. (Contributed by Mario Carneiro, 19-Nov-2013.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
clmvsubval.v | β’ π = (Baseβπ) |
clmvsubval.p | β’ + = (+gβπ) |
clmvsubval.m | β’ β = (-gβπ) |
clmvsubval.f | β’ πΉ = (Scalarβπ) |
clmvsubval.s | β’ Β· = ( Β·π βπ) |
Ref | Expression |
---|---|
clmvsubval2 | β’ ((π β βMod β§ π΄ β π β§ π΅ β π) β (π΄ β π΅) = ((-1 Β· π΅) + π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmvsubval.v | . . 3 β’ π = (Baseβπ) | |
2 | clmvsubval.p | . . 3 β’ + = (+gβπ) | |
3 | clmvsubval.m | . . 3 β’ β = (-gβπ) | |
4 | clmvsubval.f | . . 3 β’ πΉ = (Scalarβπ) | |
5 | clmvsubval.s | . . 3 β’ Β· = ( Β·π βπ) | |
6 | 1, 2, 3, 4, 5 | clmvsubval 24857 | . 2 β’ ((π β βMod β§ π΄ β π β§ π΅ β π) β (π΄ β π΅) = (π΄ + (-1 Β· π΅))) |
7 | clmabl 24817 | . . . 4 β’ (π β βMod β π β Abel) | |
8 | 7 | 3ad2ant1 1132 | . . 3 β’ ((π β βMod β§ π΄ β π β§ π΅ β π) β π β Abel) |
9 | simp2 1136 | . . 3 β’ ((π β βMod β§ π΄ β π β§ π΅ β π) β π΄ β π) | |
10 | simpl 482 | . . . . 5 β’ ((π β βMod β§ π΅ β π) β π β βMod) | |
11 | eqid 2731 | . . . . . . 7 β’ (BaseβπΉ) = (BaseβπΉ) | |
12 | 4, 11 | clmneg1 24830 | . . . . . 6 β’ (π β βMod β -1 β (BaseβπΉ)) |
13 | 12 | adantr 480 | . . . . 5 β’ ((π β βMod β§ π΅ β π) β -1 β (BaseβπΉ)) |
14 | simpr 484 | . . . . 5 β’ ((π β βMod β§ π΅ β π) β π΅ β π) | |
15 | 1, 4, 5, 11 | clmvscl 24836 | . . . . 5 β’ ((π β βMod β§ -1 β (BaseβπΉ) β§ π΅ β π) β (-1 Β· π΅) β π) |
16 | 10, 13, 14, 15 | syl3anc 1370 | . . . 4 β’ ((π β βMod β§ π΅ β π) β (-1 Β· π΅) β π) |
17 | 16 | 3adant2 1130 | . . 3 β’ ((π β βMod β§ π΄ β π β§ π΅ β π) β (-1 Β· π΅) β π) |
18 | 1, 2 | ablcom 19709 | . . 3 β’ ((π β Abel β§ π΄ β π β§ (-1 Β· π΅) β π) β (π΄ + (-1 Β· π΅)) = ((-1 Β· π΅) + π΄)) |
19 | 8, 9, 17, 18 | syl3anc 1370 | . 2 β’ ((π β βMod β§ π΄ β π β§ π΅ β π) β (π΄ + (-1 Β· π΅)) = ((-1 Β· π΅) + π΄)) |
20 | 6, 19 | eqtrd 2771 | 1 β’ ((π β βMod β§ π΄ β π β§ π΅ β π) β (π΄ β π΅) = ((-1 Β· π΅) + π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 1c1 11115 -cneg 11450 Basecbs 17149 +gcplusg 17202 Scalarcsca 17205 Β·π cvsca 17206 -gcsg 18858 Abelcabl 19691 βModcclm 24810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-seq 13972 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-ur 20077 df-ring 20130 df-cring 20131 df-subrg 20460 df-lmod 20617 df-cnfld 21146 df-clm 24811 |
This theorem is referenced by: clmvz 24859 |
Copyright terms: Public domain | W3C validator |