Step | Hyp | Ref
| Expression |
1 | | nmoleub2.n |
. 2
⊢ 𝑁 = (𝑆 normOp 𝑇) |
2 | | nmoleub2.v |
. 2
⊢ 𝑉 = (Base‘𝑆) |
3 | | nmoleub2.l |
. 2
⊢ 𝐿 = (norm‘𝑆) |
4 | | nmoleub2.m |
. 2
⊢ 𝑀 = (norm‘𝑇) |
5 | | nmoleub2.g |
. 2
⊢ 𝐺 = (Scalar‘𝑆) |
6 | | nmoleub2.w |
. 2
⊢ 𝐾 = (Base‘𝐺) |
7 | | nmoleub2.s |
. 2
⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩
ℂMod)) |
8 | | nmoleub2.t |
. 2
⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩
ℂMod)) |
9 | | nmoleub2.f |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
10 | | nmoleub2.a |
. 2
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
11 | | nmoleub2.r |
. 2
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
12 | | nmoleub3.5 |
. . 3
⊢ (𝜑 → 0 ≤ 𝐴) |
13 | 12 | adantr 481 |
. 2
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴) |
14 | 9 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
15 | | nmoleub3.6 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ⊆ 𝐾) |
16 | 15 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ℝ ⊆ 𝐾) |
17 | 11 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑅 ∈
ℝ+) |
18 | 7 | elin1d 4132 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ∈ NrmMod) |
19 | 18 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑆 ∈ NrmMod) |
20 | | nlmngp 23841 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑆 ∈ NrmGrp) |
22 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑦 ∈ 𝑉) |
23 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑦 ≠ (0g‘𝑆)) |
24 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑆) = (0g‘𝑆) |
25 | 2, 3, 24 | nmrpcl 23776 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆)) → (𝐿‘𝑦) ∈
ℝ+) |
26 | 21, 22, 23, 25 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘𝑦) ∈
ℝ+) |
27 | 17, 26 | rpdivcld 12789 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈
ℝ+) |
28 | 27 | rpred 12772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈ ℝ) |
29 | 16, 28 | sseldd 3922 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈ 𝐾) |
30 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
31 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
32 | 5, 6, 2, 30, 31 | lmhmlin 20297 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑅 / (𝐿‘𝑦)) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉) → (𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
33 | 14, 29, 22, 32 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
34 | 33 | fveq2d 6778 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) = (𝑀‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦)))) |
35 | 8 | elin1d 4132 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ NrmMod) |
36 | 35 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑇 ∈ NrmMod) |
37 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
38 | 5, 37 | lmhmsca 20292 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺) |
39 | 14, 38 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (Scalar‘𝑇) = 𝐺) |
40 | 39 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺)) |
41 | 40, 6 | eqtr4di 2796 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (Base‘(Scalar‘𝑇)) = 𝐾) |
42 | 29, 41 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈ (Base‘(Scalar‘𝑇))) |
43 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑇) =
(Base‘𝑇) |
44 | 2, 43 | lmhmf 20296 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
45 | 14, 44 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝐹:𝑉⟶(Base‘𝑇)) |
46 | 45, 22 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐹‘𝑦) ∈ (Base‘𝑇)) |
47 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
48 | | eqid 2738 |
. . . . . . . . 9
⊢
(norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇)) |
49 | 43, 4, 31, 37, 47, 48 | nmvs 23840 |
. . . . . . . 8
⊢ ((𝑇 ∈ NrmMod ∧ (𝑅 / (𝐿‘𝑦)) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹‘𝑦) ∈ (Base‘𝑇)) → (𝑀‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) · (𝑀‘(𝐹‘𝑦)))) |
50 | 36, 42, 46, 49 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) · (𝑀‘(𝐹‘𝑦)))) |
51 | 39 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺)) |
52 | 51 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦)))) |
53 | 7 | elin2d 4133 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ ℂMod) |
54 | 53 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑆 ∈ ℂMod) |
55 | 5, 6 | clmabs 24246 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿‘𝑦)) ∈ 𝐾) → (abs‘(𝑅 / (𝐿‘𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦)))) |
56 | 54, 29, 55 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (abs‘(𝑅 / (𝐿‘𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦)))) |
57 | 27 | rpge0d 12776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 0 ≤ (𝑅 / (𝐿‘𝑦))) |
58 | 28, 57 | absidd 15134 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (abs‘(𝑅 / (𝐿‘𝑦))) = (𝑅 / (𝐿‘𝑦))) |
59 | 56, 58 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦))) = (𝑅 / (𝐿‘𝑦))) |
60 | 52, 59 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) = (𝑅 / (𝐿‘𝑦))) |
61 | 60 | oveq1d 7290 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) · (𝑀‘(𝐹‘𝑦))) = ((𝑅 / (𝐿‘𝑦)) · (𝑀‘(𝐹‘𝑦)))) |
62 | 34, 50, 61 | 3eqtrd 2782 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) = ((𝑅 / (𝐿‘𝑦)) · (𝑀‘(𝐹‘𝑦)))) |
63 | 62 | oveq1d 7290 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) = (((𝑅 / (𝐿‘𝑦)) · (𝑀‘(𝐹‘𝑦))) / 𝑅)) |
64 | 27 | rpcnd 12774 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈ ℂ) |
65 | | nlmngp 23841 |
. . . . . . . . 9
⊢ (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp) |
66 | 36, 65 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑇 ∈ NrmGrp) |
67 | 43, 4 | nmcl 23772 |
. . . . . . . 8
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑦) ∈ (Base‘𝑇)) → (𝑀‘(𝐹‘𝑦)) ∈ ℝ) |
68 | 66, 46, 67 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ∈ ℝ) |
69 | 68 | recnd 11003 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ∈ ℂ) |
70 | 17 | rpcnd 12774 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑅 ∈ ℂ) |
71 | 17 | rpne0d 12777 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑅 ≠ 0) |
72 | 64, 69, 70, 71 | divassd 11786 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (((𝑅 / (𝐿‘𝑦)) · (𝑀‘(𝐹‘𝑦))) / 𝑅) = ((𝑅 / (𝐿‘𝑦)) · ((𝑀‘(𝐹‘𝑦)) / 𝑅))) |
73 | 26 | rpcnd 12774 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘𝑦) ∈ ℂ) |
74 | 26 | rpne0d 12777 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘𝑦) ≠ 0) |
75 | 69, 70, 73, 71, 74 | dmdcand 11780 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑅 / (𝐿‘𝑦)) · ((𝑀‘(𝐹‘𝑦)) / 𝑅)) = ((𝑀‘(𝐹‘𝑦)) / (𝐿‘𝑦))) |
76 | 63, 72, 75 | 3eqtrd 2782 |
. . . 4
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) = ((𝑀‘(𝐹‘𝑦)) / (𝐿‘𝑦))) |
77 | | eqid 2738 |
. . . . . . . 8
⊢
(norm‘𝐺) =
(norm‘𝐺) |
78 | 2, 3, 30, 5, 6, 77 | nmvs 23840 |
. . . . . . 7
⊢ ((𝑆 ∈ NrmMod ∧ (𝑅 / (𝐿‘𝑦)) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉) → (𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦))) · (𝐿‘𝑦))) |
79 | 19, 29, 22, 78 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦))) · (𝐿‘𝑦))) |
80 | 59 | oveq1d 7290 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦))) · (𝐿‘𝑦)) = ((𝑅 / (𝐿‘𝑦)) · (𝐿‘𝑦))) |
81 | 70, 73, 74 | divcan1d 11752 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑅 / (𝐿‘𝑦)) · (𝐿‘𝑦)) = 𝑅) |
82 | 79, 80, 81 | 3eqtrd 2782 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = 𝑅) |
83 | | fveqeq2 6783 |
. . . . . . 7
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → ((𝐿‘𝑥) = 𝑅 ↔ (𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = 𝑅)) |
84 | | 2fveq3 6779 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)))) |
85 | 84 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → ((𝑀‘(𝐹‘𝑥)) / 𝑅) = ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅)) |
86 | 85 | breq1d 5084 |
. . . . . . 7
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → (((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴)) |
87 | 83, 86 | imbi12d 345 |
. . . . . 6
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → (((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴))) |
88 | | simpllr 773 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) |
89 | 2, 5, 30, 6 | clmvscl 24251 |
. . . . . . 7
⊢ ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿‘𝑦)) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉) → ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) ∈ 𝑉) |
90 | 54, 29, 22, 89 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) ∈ 𝑉) |
91 | 87, 88, 90 | rspcdva 3562 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴)) |
92 | 82, 91 | mpd 15 |
. . . 4
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴) |
93 | 76, 92 | eqbrtrrd 5098 |
. . 3
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑀‘(𝐹‘𝑦)) / (𝐿‘𝑦)) ≤ 𝐴) |
94 | | simplr 766 |
. . . 4
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝐴 ∈ ℝ) |
95 | 68, 94, 26 | ledivmul2d 12826 |
. . 3
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (((𝑀‘(𝐹‘𝑦)) / (𝐿‘𝑦)) ≤ 𝐴 ↔ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦)))) |
96 | 93, 95 | mpbid 231 |
. 2
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) |
97 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈
ℝ+) |
98 | 97 | rpred 12772 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈ ℝ) |
99 | 98 | leidd 11541 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ≤ 𝑅) |
100 | | breq1 5077 |
. . 3
⊢ ((𝐿‘𝑥) = 𝑅 → ((𝐿‘𝑥) ≤ 𝑅 ↔ 𝑅 ≤ 𝑅)) |
101 | 99, 100 | syl5ibrcom 246 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝑥) = 𝑅 → (𝐿‘𝑥) ≤ 𝑅)) |
102 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 96, 101 | nmoleub2lem 24277 |
1
⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) |