MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub3 Structured version   Visualization version   GIF version

Theorem nmoleub3 25017
Description: The operator norm is the supremum of the value of a linear operator on the unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub3.5 (𝜑 → 0 ≤ 𝐴)
nmoleub3.6 (𝜑 → ℝ ⊆ 𝐾)
Assertion
Ref Expression
nmoleub3 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem nmoleub3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 nmoleub3.5 . . 3 (𝜑 → 0 ≤ 𝐴)
1312adantr 480 . 2 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
149ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
15 nmoleub3.6 . . . . . . . . . . 11 (𝜑 → ℝ ⊆ 𝐾)
1615ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ℝ ⊆ 𝐾)
1711ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ∈ ℝ+)
187elin1d 4155 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ NrmMod)
1918ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ NrmMod)
20 nlmngp 24563 . . . . . . . . . . . . . 14 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2119, 20syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ NrmGrp)
22 simprl 770 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑦𝑉)
23 simprr 772 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑦 ≠ (0g𝑆))
24 eqid 2729 . . . . . . . . . . . . . 14 (0g𝑆) = (0g𝑆)
252, 3, 24nmrpcl 24506 . . . . . . . . . . . . 13 ((𝑆 ∈ NrmGrp ∧ 𝑦𝑉𝑦 ≠ (0g𝑆)) → (𝐿𝑦) ∈ ℝ+)
2621, 22, 23, 25syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ∈ ℝ+)
2717, 26rpdivcld 12954 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℝ+)
2827rpred 12937 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℝ)
2916, 28sseldd 3936 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ 𝐾)
30 eqid 2729 . . . . . . . . . 10 ( ·𝑠𝑆) = ( ·𝑠𝑆)
31 eqid 2729 . . . . . . . . . 10 ( ·𝑠𝑇) = ( ·𝑠𝑇)
325, 6, 2, 30, 31lmhmlin 20939 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → (𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = ((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦)))
3314, 29, 22, 32syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = ((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦)))
3433fveq2d 6826 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) = (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))))
358elin1d 4155 . . . . . . . . 9 (𝜑𝑇 ∈ NrmMod)
3635ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑇 ∈ NrmMod)
37 eqid 2729 . . . . . . . . . . . . 13 (Scalar‘𝑇) = (Scalar‘𝑇)
385, 37lmhmsca 20934 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺)
3914, 38syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Scalar‘𝑇) = 𝐺)
4039fveq2d 6826 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺))
4140, 6eqtr4di 2782 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Base‘(Scalar‘𝑇)) = 𝐾)
4229, 41eleqtrrd 2831 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ (Base‘(Scalar‘𝑇)))
43 eqid 2729 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
442, 43lmhmf 20938 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
4514, 44syl 17 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐹:𝑉⟶(Base‘𝑇))
4645, 22ffvelcdmd 7019 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐹𝑦) ∈ (Base‘𝑇))
47 eqid 2729 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
48 eqid 2729 . . . . . . . . 9 (norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇))
4943, 4, 31, 37, 47, 48nmvs 24562 . . . . . . . 8 ((𝑇 ∈ NrmMod ∧ (𝑅 / (𝐿𝑦)) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))))
5036, 42, 46, 49syl3anc 1373 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))))
5139fveq2d 6826 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺))
5251fveq1d 6824 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
537elin2d 4156 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℂMod)
5453ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ ℂMod)
555, 6clmabs 24981 . . . . . . . . . . 11 ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾) → (abs‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
5654, 29, 55syl2anc 584 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (abs‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
5727rpge0d 12941 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 0 ≤ (𝑅 / (𝐿𝑦)))
5828, 57absidd 15330 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (abs‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
5956, 58eqtr3d 2766 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
6052, 59eqtrd 2764 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
6160oveq1d 7364 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))) = ((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))))
6234, 50, 613eqtrd 2768 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) = ((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))))
6362oveq1d 7364 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) = (((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))) / 𝑅))
6427rpcnd 12939 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℂ)
65 nlmngp 24563 . . . . . . . . 9 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
6636, 65syl 17 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
6743, 4nmcl 24502 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑦)) ∈ ℝ)
6866, 46, 67syl2anc 584 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ∈ ℝ)
6968recnd 11143 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ∈ ℂ)
7017rpcnd 12939 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ∈ ℂ)
7117rpne0d 12942 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ≠ 0)
7264, 69, 70, 71divassd 11935 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))) / 𝑅) = ((𝑅 / (𝐿𝑦)) · ((𝑀‘(𝐹𝑦)) / 𝑅)))
7326rpcnd 12939 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ∈ ℂ)
7426rpne0d 12942 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ≠ 0)
7569, 70, 73, 71, 74dmdcand 11929 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦)) · ((𝑀‘(𝐹𝑦)) / 𝑅)) = ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)))
7663, 72, 753eqtrd 2768 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) = ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)))
77 eqid 2729 . . . . . . . 8 (norm‘𝐺) = (norm‘𝐺)
782, 3, 30, 5, 6, 77nmvs 24562 . . . . . . 7 ((𝑆 ∈ NrmMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)))
7919, 29, 22, 78syl3anc 1373 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)))
8059oveq1d 7364 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)) = ((𝑅 / (𝐿𝑦)) · (𝐿𝑦)))
8170, 73, 74divcan1d 11901 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦)) · (𝐿𝑦)) = 𝑅)
8279, 80, 813eqtrd 2768 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅)
83 fveqeq2 6831 . . . . . . 7 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → ((𝐿𝑥) = 𝑅 ↔ (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅))
84 2fveq3 6827 . . . . . . . . 9 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))))
8584oveq1d 7364 . . . . . . . 8 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅))
8685breq1d 5102 . . . . . . 7 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
8783, 86imbi12d 344 . . . . . 6 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
88 simpllr 775 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
892, 5, 30, 6clmvscl 24986 . . . . . . 7 ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) ∈ 𝑉)
9054, 29, 22, 89syl3anc 1373 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) ∈ 𝑉)
9187, 88, 90rspcdva 3578 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
9282, 91mpd 15 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)
9376, 92eqbrtrrd 5116 . . 3 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)) ≤ 𝐴)
94 simplr 768 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐴 ∈ ℝ)
9568, 94, 26ledivmul2d 12991 . . 3 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((𝑀‘(𝐹𝑦)) / (𝐿𝑦)) ≤ 𝐴 ↔ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))))
9693, 95mpbid 232 . 2 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
9711adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ+)
9897rpred 12937 . . . 4 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ)
9998leidd 11686 . . 3 ((𝜑𝑥𝑉) → 𝑅𝑅)
100 breq1 5095 . . 3 ((𝐿𝑥) = 𝑅 → ((𝐿𝑥) ≤ 𝑅𝑅𝑅))
10199, 100syl5ibrcom 247 . 2 ((𝜑𝑥𝑉) → ((𝐿𝑥) = 𝑅 → (𝐿𝑥) ≤ 𝑅))
1021, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 96, 101nmoleub2lem 25012 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3902  wss 3903   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009   · cmul 11014  *cxr 11148  cle 11150   / cdiv 11777  +crp 12893  abscabs 15141  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   LMHom clmhm 20923  normcnm 24462  NrmGrpcngp 24463  NrmModcnlm 24466   normOp cnmo 24591  ℂModcclm 24960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-topgen 17347  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-subg 19002  df-ghm 19092  df-cmn 19661  df-mgp 20026  df-ring 20120  df-cring 20121  df-subrg 20455  df-lmod 20765  df-lmhm 20926  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-xms 24206  df-ms 24207  df-nm 24468  df-ngp 24469  df-nlm 24472  df-nmo 24594  df-nghm 24595  df-clm 24961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator