MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub3 Structured version   Visualization version   GIF version

Theorem nmoleub3 25171
Description: The operator norm is the supremum of the value of a linear operator on the unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub3.5 (𝜑 → 0 ≤ 𝐴)
nmoleub3.6 (𝜑 → ℝ ⊆ 𝐾)
Assertion
Ref Expression
nmoleub3 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem nmoleub3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 nmoleub3.5 . . 3 (𝜑 → 0 ≤ 𝐴)
1312adantr 480 . 2 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
149ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
15 nmoleub3.6 . . . . . . . . . . 11 (𝜑 → ℝ ⊆ 𝐾)
1615ad3antrrr 729 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ℝ ⊆ 𝐾)
1711ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ∈ ℝ+)
187elin1d 4227 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ NrmMod)
1918ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ NrmMod)
20 nlmngp 24719 . . . . . . . . . . . . . 14 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2119, 20syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ NrmGrp)
22 simprl 770 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑦𝑉)
23 simprr 772 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑦 ≠ (0g𝑆))
24 eqid 2740 . . . . . . . . . . . . . 14 (0g𝑆) = (0g𝑆)
252, 3, 24nmrpcl 24654 . . . . . . . . . . . . 13 ((𝑆 ∈ NrmGrp ∧ 𝑦𝑉𝑦 ≠ (0g𝑆)) → (𝐿𝑦) ∈ ℝ+)
2621, 22, 23, 25syl3anc 1371 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ∈ ℝ+)
2717, 26rpdivcld 13116 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℝ+)
2827rpred 13099 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℝ)
2916, 28sseldd 4009 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ 𝐾)
30 eqid 2740 . . . . . . . . . 10 ( ·𝑠𝑆) = ( ·𝑠𝑆)
31 eqid 2740 . . . . . . . . . 10 ( ·𝑠𝑇) = ( ·𝑠𝑇)
325, 6, 2, 30, 31lmhmlin 21057 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → (𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = ((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦)))
3314, 29, 22, 32syl3anc 1371 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = ((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦)))
3433fveq2d 6924 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) = (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))))
358elin1d 4227 . . . . . . . . 9 (𝜑𝑇 ∈ NrmMod)
3635ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑇 ∈ NrmMod)
37 eqid 2740 . . . . . . . . . . . . 13 (Scalar‘𝑇) = (Scalar‘𝑇)
385, 37lmhmsca 21052 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺)
3914, 38syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Scalar‘𝑇) = 𝐺)
4039fveq2d 6924 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺))
4140, 6eqtr4di 2798 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Base‘(Scalar‘𝑇)) = 𝐾)
4229, 41eleqtrrd 2847 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ (Base‘(Scalar‘𝑇)))
43 eqid 2740 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
442, 43lmhmf 21056 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
4514, 44syl 17 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐹:𝑉⟶(Base‘𝑇))
4645, 22ffvelcdmd 7119 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐹𝑦) ∈ (Base‘𝑇))
47 eqid 2740 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
48 eqid 2740 . . . . . . . . 9 (norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇))
4943, 4, 31, 37, 47, 48nmvs 24718 . . . . . . . 8 ((𝑇 ∈ NrmMod ∧ (𝑅 / (𝐿𝑦)) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))))
5036, 42, 46, 49syl3anc 1371 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))))
5139fveq2d 6924 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺))
5251fveq1d 6922 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
537elin2d 4228 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℂMod)
5453ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ ℂMod)
555, 6clmabs 25135 . . . . . . . . . . 11 ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾) → (abs‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
5654, 29, 55syl2anc 583 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (abs‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
5727rpge0d 13103 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 0 ≤ (𝑅 / (𝐿𝑦)))
5828, 57absidd 15471 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (abs‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
5956, 58eqtr3d 2782 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
6052, 59eqtrd 2780 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
6160oveq1d 7463 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))) = ((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))))
6234, 50, 613eqtrd 2784 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) = ((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))))
6362oveq1d 7463 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) = (((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))) / 𝑅))
6427rpcnd 13101 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℂ)
65 nlmngp 24719 . . . . . . . . 9 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
6636, 65syl 17 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
6743, 4nmcl 24650 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑦)) ∈ ℝ)
6866, 46, 67syl2anc 583 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ∈ ℝ)
6968recnd 11318 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ∈ ℂ)
7017rpcnd 13101 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ∈ ℂ)
7117rpne0d 13104 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ≠ 0)
7264, 69, 70, 71divassd 12105 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))) / 𝑅) = ((𝑅 / (𝐿𝑦)) · ((𝑀‘(𝐹𝑦)) / 𝑅)))
7326rpcnd 13101 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ∈ ℂ)
7426rpne0d 13104 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ≠ 0)
7569, 70, 73, 71, 74dmdcand 12099 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦)) · ((𝑀‘(𝐹𝑦)) / 𝑅)) = ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)))
7663, 72, 753eqtrd 2784 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) = ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)))
77 eqid 2740 . . . . . . . 8 (norm‘𝐺) = (norm‘𝐺)
782, 3, 30, 5, 6, 77nmvs 24718 . . . . . . 7 ((𝑆 ∈ NrmMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)))
7919, 29, 22, 78syl3anc 1371 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)))
8059oveq1d 7463 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)) = ((𝑅 / (𝐿𝑦)) · (𝐿𝑦)))
8170, 73, 74divcan1d 12071 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦)) · (𝐿𝑦)) = 𝑅)
8279, 80, 813eqtrd 2784 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅)
83 fveqeq2 6929 . . . . . . 7 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → ((𝐿𝑥) = 𝑅 ↔ (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅))
84 2fveq3 6925 . . . . . . . . 9 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))))
8584oveq1d 7463 . . . . . . . 8 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅))
8685breq1d 5176 . . . . . . 7 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
8783, 86imbi12d 344 . . . . . 6 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
88 simpllr 775 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
892, 5, 30, 6clmvscl 25140 . . . . . . 7 ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) ∈ 𝑉)
9054, 29, 22, 89syl3anc 1371 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) ∈ 𝑉)
9187, 88, 90rspcdva 3636 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
9282, 91mpd 15 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)
9376, 92eqbrtrrd 5190 . . 3 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)) ≤ 𝐴)
94 simplr 768 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐴 ∈ ℝ)
9568, 94, 26ledivmul2d 13153 . . 3 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((𝑀‘(𝐹𝑦)) / (𝐿𝑦)) ≤ 𝐴 ↔ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))))
9693, 95mpbid 232 . 2 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
9711adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ+)
9897rpred 13099 . . . 4 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ)
9998leidd 11856 . . 3 ((𝜑𝑥𝑉) → 𝑅𝑅)
100 breq1 5169 . . 3 ((𝐿𝑥) = 𝑅 → ((𝐿𝑥) ≤ 𝑅𝑅𝑅))
10199, 100syl5ibrcom 247 . 2 ((𝜑𝑥𝑉) → ((𝐿𝑥) = 𝑅 → (𝐿𝑥) ≤ 𝑅))
1021, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 96, 101nmoleub2lem 25166 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  cin 3975  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  *cxr 11323  cle 11325   / cdiv 11947  +crp 13057  abscabs 15283  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   LMHom clmhm 21041  normcnm 24610  NrmGrpcngp 24611  NrmModcnlm 24614   normOp cnmo 24747  ℂModcclm 25114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-subg 19163  df-ghm 19253  df-cmn 19824  df-mgp 20162  df-ring 20262  df-cring 20263  df-subrg 20597  df-lmod 20882  df-lmhm 21044  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617  df-nlm 24620  df-nmo 24750  df-nghm 24751  df-clm 25115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator