MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub3 Structured version   Visualization version   GIF version

Theorem nmoleub3 25019
Description: The operator norm is the supremum of the value of a linear operator on the unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub3.5 (𝜑 → 0 ≤ 𝐴)
nmoleub3.6 (𝜑 → ℝ ⊆ 𝐾)
Assertion
Ref Expression
nmoleub3 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem nmoleub3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 nmoleub3.5 . . 3 (𝜑 → 0 ≤ 𝐴)
1312adantr 480 . 2 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
149ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
15 nmoleub3.6 . . . . . . . . . . 11 (𝜑 → ℝ ⊆ 𝐾)
1615ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ℝ ⊆ 𝐾)
1711ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ∈ ℝ+)
187elin1d 4167 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ NrmMod)
1918ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ NrmMod)
20 nlmngp 24565 . . . . . . . . . . . . . 14 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2119, 20syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ NrmGrp)
22 simprl 770 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑦𝑉)
23 simprr 772 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑦 ≠ (0g𝑆))
24 eqid 2729 . . . . . . . . . . . . . 14 (0g𝑆) = (0g𝑆)
252, 3, 24nmrpcl 24508 . . . . . . . . . . . . 13 ((𝑆 ∈ NrmGrp ∧ 𝑦𝑉𝑦 ≠ (0g𝑆)) → (𝐿𝑦) ∈ ℝ+)
2621, 22, 23, 25syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ∈ ℝ+)
2717, 26rpdivcld 13012 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℝ+)
2827rpred 12995 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℝ)
2916, 28sseldd 3947 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ 𝐾)
30 eqid 2729 . . . . . . . . . 10 ( ·𝑠𝑆) = ( ·𝑠𝑆)
31 eqid 2729 . . . . . . . . . 10 ( ·𝑠𝑇) = ( ·𝑠𝑇)
325, 6, 2, 30, 31lmhmlin 20942 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → (𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = ((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦)))
3314, 29, 22, 32syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = ((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦)))
3433fveq2d 6862 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) = (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))))
358elin1d 4167 . . . . . . . . 9 (𝜑𝑇 ∈ NrmMod)
3635ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑇 ∈ NrmMod)
37 eqid 2729 . . . . . . . . . . . . 13 (Scalar‘𝑇) = (Scalar‘𝑇)
385, 37lmhmsca 20937 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺)
3914, 38syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Scalar‘𝑇) = 𝐺)
4039fveq2d 6862 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺))
4140, 6eqtr4di 2782 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Base‘(Scalar‘𝑇)) = 𝐾)
4229, 41eleqtrrd 2831 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ (Base‘(Scalar‘𝑇)))
43 eqid 2729 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
442, 43lmhmf 20941 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
4514, 44syl 17 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐹:𝑉⟶(Base‘𝑇))
4645, 22ffvelcdmd 7057 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐹𝑦) ∈ (Base‘𝑇))
47 eqid 2729 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
48 eqid 2729 . . . . . . . . 9 (norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇))
4943, 4, 31, 37, 47, 48nmvs 24564 . . . . . . . 8 ((𝑇 ∈ NrmMod ∧ (𝑅 / (𝐿𝑦)) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))))
5036, 42, 46, 49syl3anc 1373 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))))
5139fveq2d 6862 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺))
5251fveq1d 6860 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
537elin2d 4168 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℂMod)
5453ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ ℂMod)
555, 6clmabs 24983 . . . . . . . . . . 11 ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾) → (abs‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
5654, 29, 55syl2anc 584 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (abs‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
5727rpge0d 12999 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 0 ≤ (𝑅 / (𝐿𝑦)))
5828, 57absidd 15389 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (abs‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
5956, 58eqtr3d 2766 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
6052, 59eqtrd 2764 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
6160oveq1d 7402 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))) = ((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))))
6234, 50, 613eqtrd 2768 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) = ((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))))
6362oveq1d 7402 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) = (((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))) / 𝑅))
6427rpcnd 12997 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℂ)
65 nlmngp 24565 . . . . . . . . 9 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
6636, 65syl 17 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
6743, 4nmcl 24504 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑦)) ∈ ℝ)
6866, 46, 67syl2anc 584 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ∈ ℝ)
6968recnd 11202 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ∈ ℂ)
7017rpcnd 12997 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ∈ ℂ)
7117rpne0d 13000 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ≠ 0)
7264, 69, 70, 71divassd 11993 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))) / 𝑅) = ((𝑅 / (𝐿𝑦)) · ((𝑀‘(𝐹𝑦)) / 𝑅)))
7326rpcnd 12997 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ∈ ℂ)
7426rpne0d 13000 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ≠ 0)
7569, 70, 73, 71, 74dmdcand 11987 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦)) · ((𝑀‘(𝐹𝑦)) / 𝑅)) = ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)))
7663, 72, 753eqtrd 2768 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) = ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)))
77 eqid 2729 . . . . . . . 8 (norm‘𝐺) = (norm‘𝐺)
782, 3, 30, 5, 6, 77nmvs 24564 . . . . . . 7 ((𝑆 ∈ NrmMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)))
7919, 29, 22, 78syl3anc 1373 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)))
8059oveq1d 7402 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)) = ((𝑅 / (𝐿𝑦)) · (𝐿𝑦)))
8170, 73, 74divcan1d 11959 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦)) · (𝐿𝑦)) = 𝑅)
8279, 80, 813eqtrd 2768 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅)
83 fveqeq2 6867 . . . . . . 7 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → ((𝐿𝑥) = 𝑅 ↔ (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅))
84 2fveq3 6863 . . . . . . . . 9 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))))
8584oveq1d 7402 . . . . . . . 8 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅))
8685breq1d 5117 . . . . . . 7 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
8783, 86imbi12d 344 . . . . . 6 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
88 simpllr 775 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
892, 5, 30, 6clmvscl 24988 . . . . . . 7 ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) ∈ 𝑉)
9054, 29, 22, 89syl3anc 1373 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) ∈ 𝑉)
9187, 88, 90rspcdva 3589 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
9282, 91mpd 15 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)
9376, 92eqbrtrrd 5131 . . 3 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)) ≤ 𝐴)
94 simplr 768 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐴 ∈ ℝ)
9568, 94, 26ledivmul2d 13049 . . 3 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((𝑀‘(𝐹𝑦)) / (𝐿𝑦)) ≤ 𝐴 ↔ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))))
9693, 95mpbid 232 . 2 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
9711adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ+)
9897rpred 12995 . . . 4 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ)
9998leidd 11744 . . 3 ((𝜑𝑥𝑉) → 𝑅𝑅)
100 breq1 5110 . . 3 ((𝐿𝑥) = 𝑅 → ((𝐿𝑥) ≤ 𝑅𝑅𝑅))
10199, 100syl5ibrcom 247 . 2 ((𝜑𝑥𝑉) → ((𝐿𝑥) = 𝑅 → (𝐿𝑥) ≤ 𝑅))
1021, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 96, 101nmoleub2lem 25014 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3913  wss 3914   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   · cmul 11073  *cxr 11207  cle 11209   / cdiv 11835  +crp 12951  abscabs 15200  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   LMHom clmhm 20926  normcnm 24464  NrmGrpcngp 24465  NrmModcnlm 24468   normOp cnmo 24593  ℂModcclm 24962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-topgen 17406  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-subg 19055  df-ghm 19145  df-cmn 19712  df-mgp 20050  df-ring 20144  df-cring 20145  df-subrg 20479  df-lmod 20768  df-lmhm 20929  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-ms 24209  df-nm 24470  df-ngp 24471  df-nlm 24474  df-nmo 24596  df-nghm 24597  df-clm 24963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator