Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjoml2i | Structured version Visualization version GIF version |
Description: Variation of orthomodular law. Definition in [Kalmbach] p. 22. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
pjoml2i | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4161 | . . 3 ⊢ ((⊥‘𝐴) ∩ 𝐵) ⊆ 𝐵 | |
2 | pjoml2.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
3 | 2 | choccli 29420 | . . . . 5 ⊢ (⊥‘𝐴) ∈ Cℋ |
4 | pjoml2.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
5 | 3, 4 | chincli 29573 | . . . 4 ⊢ ((⊥‘𝐴) ∩ 𝐵) ∈ Cℋ |
6 | 2, 5, 4 | chlubii 29585 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ((⊥‘𝐴) ∩ 𝐵) ⊆ 𝐵) → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) ⊆ 𝐵) |
7 | 1, 6 | mpan2 691 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) ⊆ 𝐵) |
8 | 2, 5 | chdmj1i 29594 | . . . 4 ⊢ (⊥‘(𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) = ((⊥‘𝐴) ∩ (⊥‘((⊥‘𝐴) ∩ 𝐵))) |
9 | 8 | ineq2i 4141 | . . 3 ⊢ (𝐵 ∩ (⊥‘(𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)))) = (𝐵 ∩ ((⊥‘𝐴) ∩ (⊥‘((⊥‘𝐴) ∩ 𝐵)))) |
10 | incom 4132 | . . . . 5 ⊢ (𝐵 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ 𝐵) | |
11 | 10 | ineq1i 4140 | . . . 4 ⊢ ((𝐵 ∩ (⊥‘𝐴)) ∩ (⊥‘((⊥‘𝐴) ∩ 𝐵))) = (((⊥‘𝐴) ∩ 𝐵) ∩ (⊥‘((⊥‘𝐴) ∩ 𝐵))) |
12 | inass 4151 | . . . 4 ⊢ ((𝐵 ∩ (⊥‘𝐴)) ∩ (⊥‘((⊥‘𝐴) ∩ 𝐵))) = (𝐵 ∩ ((⊥‘𝐴) ∩ (⊥‘((⊥‘𝐴) ∩ 𝐵)))) | |
13 | 5 | chocini 29567 | . . . 4 ⊢ (((⊥‘𝐴) ∩ 𝐵) ∩ (⊥‘((⊥‘𝐴) ∩ 𝐵))) = 0ℋ |
14 | 11, 12, 13 | 3eqtr3i 2775 | . . 3 ⊢ (𝐵 ∩ ((⊥‘𝐴) ∩ (⊥‘((⊥‘𝐴) ∩ 𝐵)))) = 0ℋ |
15 | 9, 14 | eqtri 2767 | . 2 ⊢ (𝐵 ∩ (⊥‘(𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)))) = 0ℋ |
16 | 2, 5 | chjcli 29570 | . . 3 ⊢ (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) ∈ Cℋ |
17 | 4 | chshii 29340 | . . 3 ⊢ 𝐵 ∈ Sℋ |
18 | 16, 17 | pjomli 29548 | . 2 ⊢ (((𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘(𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)))) = 0ℋ) → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = 𝐵) |
19 | 7, 15, 18 | sylancl 589 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ∩ cin 3882 ⊆ wss 3883 ‘cfv 6401 (class class class)co 7235 Cℋ cch 29042 ⊥cort 29043 ∨ℋ chj 29046 0ℋc0h 29048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-inf2 9286 ax-cc 10079 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 ax-pre-sup 10837 ax-addf 10838 ax-mulf 10839 ax-hilex 29112 ax-hfvadd 29113 ax-hvcom 29114 ax-hvass 29115 ax-hv0cl 29116 ax-hvaddid 29117 ax-hfvmul 29118 ax-hvmulid 29119 ax-hvmulass 29120 ax-hvdistr1 29121 ax-hvdistr2 29122 ax-hvmul0 29123 ax-hfi 29192 ax-his1 29195 ax-his2 29196 ax-his3 29197 ax-his4 29198 ax-hcompl 29315 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-se 5528 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-isom 6410 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-of 7491 df-om 7667 df-1st 7783 df-2nd 7784 df-supp 7928 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-2o 8227 df-oadd 8230 df-omul 8231 df-er 8415 df-map 8534 df-pm 8535 df-ixp 8603 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-fsupp 9016 df-fi 9057 df-sup 9088 df-inf 9089 df-oi 9156 df-card 9585 df-acn 9588 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-div 11520 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-7 11928 df-8 11929 df-9 11930 df-n0 12121 df-z 12207 df-dec 12324 df-uz 12469 df-q 12575 df-rp 12617 df-xneg 12734 df-xadd 12735 df-xmul 12736 df-ioo 12969 df-ico 12971 df-icc 12972 df-fz 13126 df-fzo 13269 df-fl 13397 df-seq 13607 df-exp 13668 df-hash 13930 df-cj 14695 df-re 14696 df-im 14697 df-sqrt 14831 df-abs 14832 df-clim 15082 df-rlim 15083 df-sum 15283 df-struct 16733 df-sets 16750 df-slot 16768 df-ndx 16778 df-base 16794 df-ress 16818 df-plusg 16848 df-mulr 16849 df-starv 16850 df-sca 16851 df-vsca 16852 df-ip 16853 df-tset 16854 df-ple 16855 df-ds 16857 df-unif 16858 df-hom 16859 df-cco 16860 df-rest 16960 df-topn 16961 df-0g 16979 df-gsum 16980 df-topgen 16981 df-pt 16982 df-prds 16985 df-xrs 17040 df-qtop 17045 df-imas 17046 df-xps 17048 df-mre 17122 df-mrc 17123 df-acs 17125 df-mgm 18147 df-sgrp 18196 df-mnd 18207 df-submnd 18252 df-mulg 18522 df-cntz 18744 df-cmn 19205 df-psmet 20388 df-xmet 20389 df-met 20390 df-bl 20391 df-mopn 20392 df-fbas 20393 df-fg 20394 df-cnfld 20397 df-top 21823 df-topon 21840 df-topsp 21862 df-bases 21875 df-cld 21948 df-ntr 21949 df-cls 21950 df-nei 22027 df-cn 22156 df-cnp 22157 df-lm 22158 df-haus 22244 df-tx 22491 df-hmeo 22684 df-fil 22775 df-fm 22867 df-flim 22868 df-flf 22869 df-xms 23250 df-ms 23251 df-tms 23252 df-cfil 24184 df-cau 24185 df-cmet 24186 df-grpo 28606 df-gid 28607 df-ginv 28608 df-gdiv 28609 df-ablo 28658 df-vc 28672 df-nv 28705 df-va 28708 df-ba 28709 df-sm 28710 df-0v 28711 df-vs 28712 df-nmcv 28713 df-ims 28714 df-dip 28814 df-ssp 28835 df-ph 28926 df-cbn 28976 df-hnorm 29081 df-hba 29082 df-hvsub 29084 df-hlim 29085 df-hcau 29086 df-sh 29320 df-ch 29334 df-oc 29365 df-ch0 29366 df-shs 29421 df-chj 29423 |
This theorem is referenced by: pjoml3i 29699 pjoml4i 29700 pjoml5i 29701 pjoml6i 29702 cmcmlem 29704 cmbr3i 29713 pjoml2 29724 |
Copyright terms: Public domain | W3C validator |